Browse > Article
http://dx.doi.org/10.5762/KAIS.2021.22.4.483

Analysis of Chemical Constituents of Agastachis Herba and in silico Investigation on Antidiabetic Target Proteins of its Major Compounds  

Choi, Jongkeun (Department of Chemical Engineering, Chungwoon University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.22, no.4, 2021 , pp. 483-492 More about this Journal
Abstract
Agastachis Herba (AH) to treat anorexia and nausea and its antidiabetic efficacy was recently reported. This study examined the antioxidant activities and chemical constituents of AH and predicted the target proteins of each compound using in silico approaches. The results showed that EC50 values of AH methanol extract for DPPH and ABTS radical scavenging were 78.6 ㎍/mL and 31.0 ㎍/mL, respectively. Compared to the EC50 values of ascorbic acid (9.9 ㎍/mL, 5.2 ㎍/mL), the AH methanol extract possessed excellent antioxidant activities. Rosmarinic acid, tilianin, agastachoside, and acetin were confirmed as the major compounds of extracts by qualitative analysis performed with HPLC-PDA-MS/MS. The antidiabetic target proteins of these compounds were predicted by applying a structural similarity and inverse docking methodology using a DIA-DB server. The resulting target proteins were PPAR-γ, DPP IV, glucokinase, α-glucosidase, SGLT2, aldose reductase, and corticosteroid 11-beta-dehydrogenase, some of which have already been proven experimentally as target proteins. Therefore, the in silico methods can be considered valid. Finally, AH were extracted with various solvents to determine the optimal conditions for the extraction of active components. Methanol among organic solvents and 80% ethanol in ethanol-water mixtures were identified as the most effective solvent for the extraction.
Keywords
Agastachis herba; Agastache rugosa; Antioxidative Activities; DIA-DB; In silico Target Screening;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. A. Garcia-Diaz, G. Navarrete-Vazquez, S. Garcia-Jimenez, S. Hidalgo-Figueroa, J. c. Almanza-Perez, F. J. Alarcon-Aguilar, J. Gomez-Zamudio, M. Cruz, M. Ibarra-Barajas, S. Estrada-Soto. "Antidiabetic, antihyperlipidemic and anti-inflammatory effects of tilianin in streptozotocin-nicotinamide diabetic rats", Biomed. Pharmacother., Vol.83, pp.667-675, Oct. 2016. DOI: https://doi.org/10.1016/j.biopha.2016.07.023   DOI
2 S. Jo, H. Kim, S. Kim, D. H. Shin, M. S. Kim, "Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors", Chem. Biol. Drug Des., Vol.94, No.6, pp.2023-2030, Dec. 2019. DOI: https://doi.org/10.1111/cbdd.13604   DOI
3 S. Singh, P. Gupta, A. Meena, S. Luqman, "Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders", Food Chem. Toxicol. Vol.145, pp.111708, Nov. 2020. DOI: https://doi.org/10.1016/j.fct.2020.111708   DOI
4 Y. Wei, P. Yuan, Q. Zhang, Y. Fu, Y. Hou, L. Gao, X. Zheng, W. Feng, "Acacetin improves endothelial dysfunction and aortic fibrosis in insulin-resistant SHR rats by estrogen receptors", Mol. Biol. Rep., Vol.47, No.9, pp.6899-6918, Sep. 2020. DOI: https://doi.org/10.1007/s11033-020-05746-3   DOI
5 J. Wang, J. Xu, T. J. Zhang, "Optimization of hydrolysis process of linarin using response surface methodology and research about ARI activity of glycosylation-acacetin", Zhongguo Zhong Yao Za Zhi. Vol.39, No.11, pp.2060-2064, Jun. 2014. DOI: https://doi.org/10.4268/cjcmm20141123   DOI
6 E. B. Kwon, M. J. Kang, H. W. Ryu, S. Lee, J. W. Lee, M. K. Lee, H. S. Lee, S. U. Lee, S. R. Oh, M. O. Kim, "Acacetin enhances glucose uptake through insulin-independent GLUT4 translocation in L6 myotubes", Phytomedicine, Vol.68, pp.153178, Mar. 2020. DOI: https://doi.org/10.1016/j.phymed.2020.153178   DOI
7 H. Chen, Q. Zhang, X. Wang, J. Yang, Q. Wang, "Qualitative analysis and simultaneous quantification of phenolic compounds in the aerial parts of Salvia miltiorrhiza by HPLC-DAD and ESI/MS(n)", Phytochem. Anal., Vol.22, No.3, pp.247-257, May-Jun 2011. DOI: https://doi.org/10.1002/pca.1272.   DOI
8 H. Perez-Sanchez, H. den-Haan, J. Pena-Garcia, J. Lozano-Sanchez, M. E. Martinez Moreno, A. Sanchez-Perez, A. Munoz, P. Ruiz-Espinosa, A. S. P. Pereira, A. Katsikoudi, J. A. Gabaldon Hernandez, I. Stojanovic, A. S. Carretero, A. G. Tzakos. "DIA-DB: A Database and Web Server for the Prediction of Diabetes Drugs", J. Chem. Inf. Model. Vol.28, No.9 pp.4124-4130, Sep. 2020. DOI: https://doi.org/10.1021/acs.jcim.0c00107   DOI
9 D. R. Laybutt, H. Kaneto, W. Hasenkamp, S. Grey, J. C. Jonas, D. C. Sgroi, A. Groff, C. Ferran, S. Bonner-Weir, A. Sharma, G. C. Weir, "Increased expression of antioxidant andantiapoptic genes in is lets that may contribute to β-cellsurvival during chronic hyperglycemia", Diabetes, Vol.51, No.2, pp.:413-456, 2002. DOI: https://doi.org/10.2337/diabetes.51.2.413   DOI
10 M. S. Ola, D. Al-Dosari, A. S. Alhomida, "Role of oxidativestress in diabetic retinopathy and the beneficial effects offlavonoids", Curr. Pharm. Des., Vol.24, No.19, pp.2180-2187, 2018. DOI: https://doi.org/10.2174/1381612824666180515151043   DOI
11 L. L. Xu, J. J. Xu, K. R. Zhong, Z. P. Shang, F. Wang, R. F. Wang, L. Zhang, J. Y. Zhang, B. Liu, "Analysis of Non-Volatile Chemical Constituents of Menthae Haplocalycis Herba by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry", Molecules, Vol.22, No.10, pp.1756, Oct. 2017. DOI: https://doi.org/10.3390/molecules22101756.   DOI
12 B. M. Dietz, Y. H. Kang, G. Liu, A. L. Eggler, P. Yao, L. R. Chadwick, G. F. Pauli, N. R. Farnsworth, A. D. Mesecar, R. B. van Breemen, J. L. Bolton, "Xanthohumol isolated from Humulus lupulus Inhibits menadione-induced DNA damage through induction of quinone reductase", Chem. Res. Toxicol., Vol.18, No.8, pp.1296-1305, Aug. 2005. DOI: https://doi.org/10.1021/tx050058x   DOI
13 S. M. Shin, J. J. Jeong, D. W. Park, H. Ko, G. T Kim, E.-H. Kim, T. Kim, E.-H. Sohn, J.E. Kwon, E. J. Koo, S. C. Kang, "Screening for Anti-diabetic Effects of Prescribed Korean Traditional Medicines", Korean J. Plant Res., Vol.25, No.6, pp.670-681, 2012. DOI: http://dx.doi.org/10.7732/kjpr.2012.25.6.670   DOI
14 Y.-J. Ji, E. Y. Lee, J. Y. Lee, Y. J. Lee, S. E. Lee, K. H. Seo, H. D. Kim, "Antioxidant and anti-diabetic effects of Agastache rugosa extract", J. East Asian Soc. Diet Life, Vol.30, No.4, pp.297-305, 2020. DOI: http://dx.doi.org/10.17495/easdl.2020.8.30.4.297   DOI
15 Q. Zhang, J. Zhang, J. Shen, A. Silva, D. A. Dennis, C. J. Barrow, "A simple 96-well microplate method for estimation of total polyphenol content in seaweeds", J Appl. Phycol., Vol.18, pp.445-450, 2006. DOI: https://doi.org/10.1007/s10811-006-9048-4   DOI
16 A. M. Bower, L. M. Real Hernandez, M. A. Berhow, E. G. de Mejia, "Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV", J. Agric. Food Chem., Vol.62, No.26, pp.6147-6158, Jul. 2014. DOI: https://doi.org/10.1021/jf500639f   DOI
17 R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, "Antioxidant activity applying an improved ABTS radical cation decolorization assay", Free Radic. Biol. Med. Vol.26, No.9-10, pp.1231-1237, May 1999. DOI: https://doi.org/10.1016/s0891-5849(98)00315-3   DOI
18 Ministry of Food and Durg Safety. The Korean Herbal Standard Chemical Profile Guidline. Ministry of Food and Durg Safety. Cheongju, pp.7-23, 2017
19 J. Kang, Y. Tang, Q. Liu, N. Guo, J. Zhang, Z. Xiao, R. Chen, Z. Shen, "Isolation, modification, and aldose reductase inhibitory activity of rosmarinic acid derivatives from the roots of Salvia grandifolia", Fitoterapia, Vol.112, pp.197-204, Jul. 2016. DOI: https://doi.org/10.1016/j.fitote.2016.05.011   DOI
20 M. R. Akanda, M. N. Uddin, I. S. Kim, D. Ahn, H. J. Tae, B. Y. Park, "The biological and pharmacological roles of polyphenol flavonoid tilianin", Eur. J. Pharmacol., Vol.842, pp.291-297, Jan. 2019. DOI: https://doi.org/10.1016/j.ejphar.2018.10.044   DOI
21 H. M. Oh, Y. J. Kang, Y. S. Lee, M. K. Park, S. H. Kim, H. J. Kim, H. G. Seo, J. H. Lee, K. C. Chang, "Protein kinase G-dependent heme oxygenase-1 induction by Agastache rugosa leaf extract protects RAW264.7 cells from hydrogen peroxide-induced injury", J. Ethnopharmacol., Vol.103, No.2, pp.229-235, Jan. 2006. DOI: https://doi.org/10.1016/j.jep.2005.08.030   DOI
22 J. H. An, H. J. Yuk, D.-Y. Kim, C. W. Nho, D. Lee, H. W. Ryu, S.-R. Oh, "Evaluation of phytochemicals in Agastache rugosa (Fisch. & C.A.Mey.) Kuntze at different growth stages by UPLC-QTof-MS", Ind. Crops Prod., Vol.112, pp.608-616, 2018. DOI: https://doi.org/10.1016/j.indcrop.2017.12.050   DOI
23 American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2019. Diabetes Care. Vol.42, Suppl.1, pp.90S-102S. 2019. DOI: https://doi.org/10.2337/dc19-S009   DOI
24 K. H. Nam, J. H. Choi, Y. J. Seo, Y. M. Lee, Y. S. Won, M. R. Lee, M. N. Lee, J. G. Park, Y. M. Kim, H. C. Kim, C. H. Lee, H. K. Lee, S. R. Oh, G. T. Oh, "Inhibitory effects of tilianin on the expression of inducible nitric oxide synthase in low density lipoprotein receptor deficiency mice", Exp. Mol. Med. Vol.38, No.4, pp.445-452, Aug. 2006. DOI: https://doi.org/10.1038/emm.2006.52   DOI
25 M. E. Gonzalez-Trujano, H. Ponce-Munoz, S. Hidalgo-Figueroa, G. Navarrete-Vazquez, S. Estrada-Soto, "Depressant effects of Agastache mexicana methanol extract and one of major metabolites tilianin" Asian Pac. J. Trop. Med. Vol.8, No.3, pp.185-190, Mar. 2015. DOI: https://doi.org/10.1016/S1995-7645(14)60312-6   DOI
26 X.-L. Tong, L. Dong, L. Chen, Z. Zhen. "Treatment of diabetes using traditional Chinese medicine: past, present and future", The American Journal of Chinese Medicine. Vol.40, No.5, pp.877-886, 2010. DOI: https://doi.org/10.1142/S0192415X12500656   DOI
27 Korean Diabetes Association. Diabetes fact sheet in Korea 2016. Available From: http://www.diabetes.or.kr
28 J. Meece, "Dispelling Myths and Removing BarriersAbout Insulin in Type 2 Diabetes", The Diabetes Educator, Vol.32, No.1, pp.9S-18S, 2006.   DOI
29 J. L. Santos, V. S. Bispo, A. B. Filho, I. F. Pinto, L. S. Dantas, D. F. Vasconcelos, F. F. Abreu, D. A. Melo, I. A. Matos, F. P. Freitas, O. F. Gomes, M. H. Medeiros, H. R. Matos, "Evaluation of chemical constituents and antioxidant activity of coconut water (Cocus nucifera L.) and caffeic acid in cell culture", An. Acad. Bras Cienc., Vol.85, No.4, pp.1235-1247, 2013. DOI: https://doi.org/10.1590/0001-37652013105312   DOI
30 D. Gfeller, A. Grosdidier, M. Wirth, A. Daina, O. Michielin, V. Zoete, "SwissTargetPrediction: a web server for target prediction of bioactive small molecules", Nucleic Acids Res. Vol.42, pp.W32-38, Jul. 2014. DOI: https://doi.org/10.1093/nar/gku293   DOI
31 J. Zhou, Q. Wang, Z. Xiang, Q. Tong, J. Pan, L. Wan, J. Chen, "Network Pharmacology Analysis of Traditional Chinese Medicine Formula Xiao Ke Yin Shui Treating Type 2 Diabetes Mellitus", Evid. Based Complement. Alternat. Med., Vol.2019, pp.4202563, Sep. 2019. DOI: https://doi.org/10.1155/2019/4202563   DOI
32 S. K. Lee, Agastachis Herba, Research Report, Research Center for Standardization of Herbal Medicines, korea, pp. 8-10. Available From: https://www.nifds.go.kr/brd/m_184/down.do?brd_id=303&seq=5&data_tp=A&file_seq=9
33 A. Daina, O. Michielin, V. Zoete, "SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules:, Nucleic Acids Res. Vol.47, No.W1, pp.W357-W364, Jul. 2019. DOI: https://doi.org/10.1093/nar/gkz382   DOI
34 A. S. P. Pereira, H. den Haan, J. Pena-Garcia, M. M. Moreno, H. Perez-Sanchez, Z. Apostolides, "Exploring African Medicinal Plants for Potential Anti-Diabetic Compounds with the DIA-DB Inverse Virtual Screening Web Server", Molecules. Vol.24, No.10, pp.2002, May, 2019, DOI: https://doi.org/10.3390/molecules24102002   DOI
35 M. S. H. Akash, K. Rehman, S. Chen, "Effects of coffee on type 2 diabetes mellitus", Nutrition. Vol.30, No.7-8, pp.755-763, 2014. DOI: https://doi.org/10.1016/j.nut.2013.11.020   DOI
36 P. V. Babu, D. Liu, E. R. Gilbert, "Recent advances in understanding the anti-diabetic actions of dietary flavonoids", J. Nutr. Biochem., Vol.24, No.11 pp.1777-1789, 2013. DOI: https://doi.org/10.1016/j.jnutbio.2013.06.003   DOI
37 Korea Food and Drug Administration. The Korean Herbal Pharmacopoeia. Korea Food and Drug Administration. Cheongju. pp.53, 2014.
38 G. Haiyan, H. Lijuan, L. Shaoyu, Z. Chen, M. A. Ashraf, "Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China", Saudi J. Biol. Sci., Vol.23 No.4, pp.524-530, Jul. 2016. DOI: https://doi.org/10.1016/j.sjbs.2016.02.020   DOI
39 M. S. Yun, C. Kim, J. K. Hwang, "Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/ Smad Pathways", J. Microbiol. Biotechnol., Vol.29, No.9, pp.1349-1360, Sep. 2019. DOI: https://doi.org/10.4014/jmb.1908.08020   DOI
40 S. H. Kim, J. H. Hong, W. K. Yang, J. H. Geum, H. R. Kim, S. Y. Choi, Y M. Kang, H. J. An, Y. C. Lee, "Herbal Combinational Medication of Glycyrrhiza glabra, Agastache rugosa Containing Glycyrrhizic Acid, Tilianin Inhibits Neutrophilic Lung Inflammation by Affecting CXCL2, Interleukin-17/STAT3 Signal Pathways in a Murine Model of COPD", Nutrients. Vol.27, No.4, pp.926, Mar. 2020. DOI: https://doi.org/10.3390/nu12040926   DOI
41 H. Perez-Sanchez, H. den-Haan, J. Pena-Garcia, J. Lozano-Sanchez, M. E. Martinez Moreno, A. Sanchez-Perez, A. Munoz, P. Ruiz-Espinosa, A. S. P. Pereira, A. Katsikoudi, J. A. Gabaldon Hernandez, I. Stojanovic, A. S. Carretero, A. G. Tzakos, "DIA-DB: A Database and Web Server for the Prediction of Diabetes Drugs", J. Chem. Inf. Model., Vol.60, No.9, pp.4124-4130, Sep. 2020. DOI: https://doi.org/10.1021/acs.jcim.0c00107   DOI
42 M. R. Al-Sereiti, K. M. Abu-Amer, P. Sen, "Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials", Indian J. Exp. Biol., Vol.37, pp.124-130, 1999.
43 K. A. Scheckel, S. C. Degner, D. F. Romagnolo, "Rosmarinic acid antagonizes activator protein-1-dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines", J. Nutr., Vol.138, pp.2098-2105, 2008. DOI: https://doi.org/10.3945/jn.108.090431.   DOI
44 N. A. Al-Dhabi, M. V. Arasu, C. H. Park, S. U. Park, "Recent studies on rosmarinic acid and its biological and pharmacological activities", EXCLI J. Vol.13, pp.1192-1195, 2014.
45 X. Zhang, Z. G. Ma, Y. P. Yuan, S. C. Xu, W. Y. Wei, P. Song, C. Y. Kong, W. Deng, Q. Z. Tang, "Rosmarinic acid attenuates cardiac fibrosis following long-term pressure overload via AMPKα/Smad3 signaling", Cell Death Dis. Vol.9, No.2, pp.102, Jan. 2018. DOI: https://doi.org/10.1038/s41419-017-0123-3   DOI
46 C. Lu, Y. Zou, Y. Liu, Y. Niu, "Rosmarinic acid counteracts activation of hepatic stellate cells via inhibiting the ROS-dependent MMP-2 activity: Involvement of Nrf2 antioxidant system", Toxicol. Appl. Pharmacol. Vol.318, pp.69-18, Mar. 2017. DOI: https://doi.org/10.1016/j.taap.2017.01.008   DOI
47 J. Lee, E. Jung, Y. Kim, J. Lee, J. Park, S. Hong, C. G. Hyun, D. Park, Y. S. Kim, "Rosmarinic acid as a downstream inhibitor of IKK-beta in TNF-alpha-induced upregulation of CCL11 and CCR3", Br. J. Pharmacol., Vol.148, No.3, pp.366-375, Jun. 2006. DOI: https://doi.org/10.1038/sj.bjp.0706728   DOI