• Title/Summary/Keyword: In Silico

Search Result 390, Processing Time 0.029 seconds

Complete genome sequence of Clostridium perfringens B20, a bacteriocin-producing pathogen

  • Elnar, Arxel G.;Kim, Geun-Bae
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1468-1472
    • /
    • 2021
  • Clostridium perfringens B20 was isolated from chicken feces collected from a local farm associated with Chung-Ang University (Anseong, Korea). The whole genome of C. perfringens B20 was sequenced using the PacBio RS II platform and assembled de novo. The genome is 2,982,563 bp long and assembled in two contigs. Annotation analyses revealed 2,668 protein-coding sequences, 30 rRNA genes, and 94 tRNA genes, with 28.2% G + C (guanine + cytosine) content. In silico genomic analysis revealed the presence of genes encoding a class IId bacteriocin, lactococcin A, and associated ABC transporter and immunity proteins, as well as a putative bacteriocin gene.

Identification of Homozygous Mutations in Two Consanguineous Families with Hearing Loss (청력 장애를 나타내는 두 근친 가계로부터 동형접합성 돌연변이의 분리)

  • Lim, Si On;Park, Hye Ri;Jung, Na Young;Park, Cho Eun;Kanwal, Sumaira;Chung, Ki Wha
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.453-463
    • /
    • 2021
  • Hearing loss is a group of clinically and genetically heterogeneous disorders characterized by congenital- to adult-onset deafness with frequent additional symptoms such as myopathy, nephropathy, and optic disorders. It is commonly divided into two types: syndromic, with no other symptoms, and nonsyndromic, with other symptoms. Autosomal recessive hearing loss is relatively frequent in Pakistan, which may be due in part to frequent consanguineous marriages. This study was performed by whole exome sequencing to determine the genetic causes in two Pakistani consanguineous families with autosomal recessive hearing loss. We identified a pathogenic homozygous variant (p.Leu326Gln in MYO7A) in a family with prelingual-onset hearing loss and two variants of uncertain significance (p.Val3094Ile in GPR98 and p.Asp56Gly in PLA2G6) in a family with early-onset hearing loss concurrent with muscular atrophy. The missense mutations in MYO7A and PLA2G6 were located in the highly conserved sites, and in silico analyses predicted pathogenicity, while the GPR98 mutation was located in the less conserved site, and most in silico analysis programs predicted its nonpathogenic effect. Homozygosity mapping showed that both alleles of the homozygous mutations identified in each family originated from a single founder; spread from this single source might be due to consanguineous marriages. This study will help provide exact molecular diagnosis and treatment for autosomal recessive hearing loss patients in Pakistan.

Association of a c.1084A>G (p.Thr362Ala)Variant in the DCTN4 Gene with Wilson Disease

  • Lee, Robin Dong-Woo;Kim, Jae-Jung;Kim, Joo-Hyun;Lee, Jong-Keuk;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.8 no.1
    • /
    • pp.53-57
    • /
    • 2011
  • Purpose: Wilson disease is an autosomal recessive disorder which causes excessive copper accumulation in the hepatic region. So far, ATP7B gene is the only disease-causing gene of Wilson disease known to date. However, ATP7B mutations have not been found in ~15% of the patients. This study was performed to identify any causative gene in Wilson disease patients without an ATP7B mutation in either allele. Materials and Methods: The sequence of the coding regions and exon-intron boundaries of the five ATP7B-interacting genes, ATOX1, COMMD1, GLRX, DCTN4, and ZBTB16, were analyzed in the 12 patients with Wilson disease. Results: Three nonsynonymous variants including c.1084A>G (p.Thr362Ala) in the exon 12 of the DCTN4 gene were identified in the patients examined. Among these, only p.Thr362Ala was predicted as possibly damaging protein function by in silico analysis. Examination of allele frequency of c.1084A>G (p.Thr362Ala) variant in the 176 patients with Wilson disease and in the 414 normal subjects revealed that the variant was more prevalent in the Wilson disease patients (odds ratio [OR]=3.14, 95% confidence interval=1.36-7.22, P=0.0094). Conclusion: Our result suggests that c.1084A>G (p.Thr362Ala) in the ATP7B-interacting DCTN4 gene may be associated with the pathogenesis of Wilson disease.

A Novel PHKA1 Mutation in a Patient with Glycogen Storage Disease Type IXD (당원 축적병 9D (GSD9D) 환자의 신규 PHKA1 돌연변이)

  • Kim, Hye Jin;Nam, Soo Hyun;Kim, Sang Beom;Chung, Ki Wha;Choi, Byung-Ok
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.672-679
    • /
    • 2020
  • Distal myopathy is a clinically and genetically heterogeneous group of degenerative diseases of the distal muscle. Glycogen storage disease type IXD (GSD9D) is a metabolic distal myopathy characterized by muscle deficiency of phosphorylase kinase, a key regulatory enzyme in glycogen metabolism. Affected individuals may develop muscle weakness, degeneration, and cramps, as well as abnormal muscle pain and stiffness after exercise. It has been reported that mutations in the PHKA1 gene which encodes the alpha subunit of muscle phosphorylase kinase cause GSD9D. In this study, we examined a Korean GSD9D family with a c.3314T>C (p.I1105T) mutation in the PHKA1 gene. This mutation has not been previously reported in any mutation database nor was it found in 500 healthy controls. The mutation region is well conserved in various other species, and in silico analysis predicts that it is likely to be pathogenic. To date, only seven mutations in the PHKA1 gene have been documented, and this is the first report of Korean GSD9D patients. This study also describes and compares the clinical symptoms and pathological conditions of previously reported cases and these Korean patients. We believe that our findings will be useful for the molecular diagnosis of GSD9D.

Current and Future Perspectives of Lung Organoid and Lung-on-chip in Biomedical and Pharmaceutical Applications

  • Junhyoung Lee;Jimin Park;Sanghun Kim;Esther Han;Sungho Maeng;Jiyou Han
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.339-355
    • /
    • 2024
  • The pulmonary system is a highly complex system that can only be understood by integrating its functional and structural aspects. Hence, in vivo animal models are generally used for pathological studies of pulmonary diseases and the evaluation of inhalation toxicity. However, to reduce the number of animals used in experimentation and with the consideration of animal welfare, alternative methods have been extensively developed. Notably, the Organization for Economic Co-operation and Development (OECD) and the United States Environmental Protection Agency (USEPA) have agreed to prohibit animal testing after 2030. Therefore, the latest advances in biotechnology are revolutionizing the approach to developing in vitro inhalation models. For example, lung organ-on-a-chip (OoC) and organoid models have been intensively studied alongside advancements in three-dimensional (3D) bioprinting and microfluidic systems. These modeling systems can more precisely imitate the complex biological environment compared to traditional in vivo animal experiments. This review paper addresses multiple aspects of the recent in vitro modeling systems of lung OoC and organoids. It includes discussions on the use of endothelial cells, epithelial cells, and fibroblasts composed of lung alveoli generated from pluripotent stem cells or cancer cells. Moreover, it covers lung air-liquid interface (ALI) systems, transwell membrane materials, and in silico models using artificial intelligence (AI) for the establishment and evaluation of in vitro pulmonary systems.

Identification of Functional and In silico Positional Differentially Expressed Genes in the Livers of High- and Low-marbled Hanwoo Steers

  • Lee, Seung-Hwan;Park, Eung-Woo;Cho, Yong-Min;Yoon, Duhak;Park, Jun-Hyung;Hong, Seong-Koo;Im, Seok-Ki;Thompson, J.M.;Oh, Sung-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1334-1341
    • /
    • 2007
  • This study identified hepatic differentially expressed genes (DEGs) affecting the marbling of muscle. Most dietary nutrients bypass the liver and produce plasma lipoproteins. These plasma lipoproteins transport free fatty acids to the target tissue, adipose tissue and muscle. We examined hepatic genes differentially expressed in a differential-display reverse transcription-polymerase chain reaction (ddRT-PCR) analysis comparing high- and low-marbled Hanwoo steers. Using 60 arbitrary primers, we found 13 candidate genes that were upregulated and five candidate genes that were downregulated in the livers of high-marbled Hanwoo steers compared to low-marbled individuals. A BLAST search for the 18 DEGs revealed that 14 were well characterized, while four were not annotated. We examined four DEGs: ATP synthase F0, complement component CD, insulin-like growth factor binding protein-3 (IGFBP3) and phosphatidylethanolamine binding protein (PEBP). Of these, only two genes (complement component CD and IGFBP3) were differentially expressed at p<0.05 between the livers of high- and low-marbled individuals. The mean mRNA levels of the PEBP and ATP synthase F0 genes did not differ significantly between the livers of high- and low-marbled individuals. Moreover, these DEGs showed very high inter-individual variation in expression. These informative DEGs were assigned to the bovine chromosome in a BLAST search of MS marker subsets and the bovine genome sequence. Genes related to energy metabolism (ATP synthase F0, ketohexokinase, electron-transfer flavoprotein-ubiquinone oxidoreductase and NADH hydrogenase) were assigned to BTA 1, 11, 17, and 22, respectively. Syntaxin, IGFBP3, decorin, the bax inhibitor gene and the PEBP gene were assigned to BTA 3, 4, 5, 5, and 17, respectively. In this study, the in silico physical maps provided information on the specific location of candidate genes associated with economic traits in cattle.

Inhibitory Effects of Gardenia jasminoides var. radicans Makino on HIV-1 Enzymes and Prediction of Inhibitory Factor by QSAR (꽃치자나무 추출물의 HIV-1 효소 억제 활성과 QSAR에 의한 활성인자 예측)

  • Yu, Young-Beob
    • Korean Journal of Plant Resources
    • /
    • v.27 no.1
    • /
    • pp.22-28
    • /
    • 2014
  • In this study, we conducted the anti-HIV-1 enzymes assay in vitro and its active components were predicted by QSAR in silico for the elucidation of action mechanism on anti-HIV of natural resources. The extracts of Gardenia jasminoides var. radicans Makino were tested for their inhibitory effects on the reverse transcriptase (RT), protease and ${\alpha}$-glucosidase. In the enzyme inhibition assay, the methanol extracts of Gardenia jasminoides var. radicans Makino stem showed a strong activity of 32.5% on the enzyme activity to cleave an oligopeptide, resembling one of the cleavage sites in the viral polyprotein which can only be processed by HIV-1 protease. Moreover the methanol extracts of stem exhibited alpha-glucosidase inhibitory activities of 26.1%. The methanol extracts ($100{\mu}g/ml$) of stem showed a weak activity of 13.4% on anti-HIV-1 RT using Enzyme Linked Oligonucleotide Sorbent Assay (ELOSA) method. However, all extracts of leaf and stem didn't exhibit the HIV-1-induced cytopathic effects with IC (inhibitory concentration) of $100{\mu}g/ml$ in HIV-1-infected human T-cell line. From these results, it is suggested that Gardenia jasminoides var. radicans Makino extracts may possibly be involved in the inhibition of reverse transcriptase, protease and alpha-glucosidase but can't vitally concerned with the viral replication in vitro.

Complete Genome Sequence of Enterococcus faecalis CAUM157 Isolated from Raw Cow's Milk

  • Elnar, Arxel G.;Lim, Sang-Dong;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.142-145
    • /
    • 2020
  • Enterococcus faecalis CAUM157, isolated from raw cow's milk, is a Gram-positive, facultatively anaerobic, and non-spore-forming bacterium capable of inhabiting a wide range of environmental niches. E. faecalis CAUM157 was observed to produce a two-peptide bacteriocin that had a wide range of activity against several pathogens, including Listeria monocytogenes, Staphylococcus aureus, and periodontitis-causing bacteria. The whole genome of E. faecalis CAUM157 was sequenced using the PacBio RS II platform, revealing a genome size of 2,972,812 bp with a G+C ratio of 37.44%, assembled into two contigs. Annotation analysis revealed 2,830 coding sequences, 12 rRNAs, and 61 tRNAs. Further, in silico analysis of the genome identified a single bacteriocin gene cluster.

SNP과 Haplotype 분석의 통계적 문제점들

  • Kim, Ho;Jo, Seong-Il;Seo, Yu-Sin;Hyeon, Sun-Ju;No, Jae-Jeong;Lee, Bok-Ju
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.203-207
    • /
    • 2002
  • Post-genome 시대를 맞이하여 인류는 전 유전체에서의 염기서열에 대한 정보를 가질 수 있게 되었다. 이러한 정보를 이용하여서 인간에게 나타나는 다양성을 설명하기 위해서 SNP(Single Nucleotide Polymorphism)의 연구가 활발히 되고 있다. 하지만 인간 체세포의 염색체는 2쌍으로 되어있기 때문에 이러한 정보가 어떠한 쌍의 조합(haplotype)으로 나타나는가를 고려하여야한다. 현재 실험적 방법으로 이를 고려하기에는 여러 가지 제약이 따르므로 통계적인 방법으로 이를 모형화하려는 노력(in silico haplotyping)이 시도되고 있다. 이 논문에서는 통계적으로 haplotype을 정하는 대표적인 알고리즘인 Clark's algorithm, E-M algorithm 등에 대한 고찰을 통하여 유전체통계학에 대한 소개를 하고자 한다.

  • PDF