• Title/Summary/Keyword: Impurity removal

Search Result 64, Processing Time 0.034 seconds

Assessment of Ni Catalyst Properties for Removal of O2 and CO Impurity in Inert Gas (불활성 가스의 O2와 CO 불순물 제거를 위한 Ni 촉매의 물성 평가)

  • Kim, Kwangbae;Jin, Saera;Kim, Eunseok;Lim, Yesol;Lee, Hyunjun;Kim, Seonghoon;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.588-595
    • /
    • 2020
  • This study examined the catalytic property of Ni-catalyst used in the gas purifying process to manufacture inert gases of N2 and Ar with high-purity over 9N for semiconductor industrial applications. Two types of Ni-catalysts with a cylindrical shape (C1) and churros shape structure (C2) were compared for the assessment. Optical microscopy and FESEM were used to analyze the shape and microstructure of the Ni-catalyst. EDS, XRD, and micro-Raman characterization were performed to examine the composition and properties. BET and Pulse Titration analyses were conducted to check the surface area and catalytic property of the Ni-catalyst. From the composition analysis results, C1 contained a relatively large amount of graphite as an impurity, and C2 contained higher Ni contents than C1. From specific surface area analysis, the specific surface area of C2 was approximately 1.69 times larger than that of C1. From catalytic property analysis, outstanding performance in O2 and CO impurity removal was observed at room temperature. Therefore, C2, having low-impurity and large specific surface area, is a suitable catalyst for the high-purity inert gas process in the semiconductor industry because of its outstanding performance in O2 and CO impurity removal at room temperature.

Dissolution Characteristics of Magnesite Ore in Hydrochloric Acid Solution and Removal of Impurity (마그네사이트 광석(鑛石)의 염산용해(鹽酸熔解) 특성(特性) 및 불순물(不純物) 제거)

  • Eom, Hyoung-Choon;Park, Hyung-Kyu;Kim, Chul-Joo;Kim, Sung-Don;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.38-45
    • /
    • 2009
  • Dissolution characteristics of magnesite ore in hydrochloric acid solution and removal of impurity were investigated. The dissolution yield increased with increasing temperature and with decreasing particle size. The optimum conditions for dissolution were found to be reaction period of 120 min, reaction temperature of $80^{\circ}C$ and mean particle size of 100. Under optimal dissolution condition the extraction of Mg was 98%. It was found that most of Si and Al exist in the residue, and they can be removed by filtering. Dissolved impurity ions were precipitated as metal hydroxides by pH adjustment. Polymers were used as coagulants for metal hydroxides and the suitable coagulant dosage was 1mg/100ml of non-ionic polymer.

Pretreatment of low-grade poly(ethylene terephthalate) waste for effective depolymerization to monomers

  • Kim, Yunsu;Kim, Do Hyun
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2303-2312
    • /
    • 2018
  • Pretreatment process of silica-coated PET fabrics, a major low-grade PET waste, was developed using the reaction with NaOH solution. By destroying the structure of silica coating layer, impurities such as silica and pigment dyes could be removed. The removal of impurity was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The pretreated PET fabric samples were used for depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET), by glycolysis with ethylene glycol (EG), and zinc acetate (ZnAc) catalyst. The quality of BHET was confirmed by DSC, TGA, HPLC and NMR analyses. The highest BHET yield of 89.23% was obtained from pretreated PET fabrics, while glycolysis with raw PET fabric yielded 85.43%. The BHET yield from untreated silica-coated PET fabrics was 60.39%. The pretreatment process enhances the monomer yield by the removal of impurity and also improves the quality of the monomer.

A Patent Analysis on Impurity Removal and Catalysts for Crude Oil Purification (원유 불순물 제거 및 정제 관련 촉매 기술에 대한 특허 분석)

  • Jo, Hee-Jin;Moun, Seong-Guen;Jo, Young-Min;Chung, Yon-Soo
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • As crude oil with heavier and/or highly oxidized components prevails, purification technologies such as desulfurization, denitrilization and demetalization have become important issues to control contents of sulfur and other impurities affecting the quality of petroleum. Also, the importance of catalyst technologies related with crude oil purification has been emphasized to control the production and yield of products. In this paper, technology trends of impurity removal such as sulfur, nitrogen and metal components from crude oil and catalysts related with purification of crude oil were studied through patent analysis. The patents published or registered in Korea, U. S. A., Japan, and Europe from mid 1970's to 2009 had been analyzed based on the application tendency, the distribution of major applicants, and their active indices, etc. The technology flow was figured out to see the technology trends.

Crystallization of Benzene from Benzene-Cyclohexane Mixtures by Layer Melt Crystallization - Phenomena of Impurity Inclusion in Crystal - (경막형 용융결정화에 의한 벤젠-사이클로헥산 혼합물로부터 벤젠의 결정화-결정의 불순물 내포현상-)

  • Kim, Kwang-Joo;Lee, Jung-Min;Ryu, Seung-Kon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.389-394
    • /
    • 1997
  • The distribution of impurity included in benzene layer crystal was explored in layer crystallization of cyclohexane and benzene mixtures. The influence of crystal growth rate on crystal purity was investigated. All experimental results for bezene-cyclohexane system obtained in layer crystallizer have been evaluated with the criterion of Wintermantel. The purity of crystal decreases with increasing degree of subcooling, decreasing feed concentration and increasing crystal growth rate. The crystal growth rate was a key parameter to determine the inclusion of impurity in crystals. The results obtained from runs performed at increasing crystallization time(i.e. crystal thickness) have clearly shown that migration of inclusions within crystal layer to the melt, leading to the removal of impurity occurs. The diffusion of impurity which takes place during the crystallization from the beginning, enhances a further purification of the crystal layer if that underwent a thermal gradient after growth of the layer crystal stops.

  • PDF

Removal Process of Metallic Impurity for Silicon Surface Detergent by Ion Exchange (실리콘 표면처리에 있어서 이온교환 막에 의한 금속불순물의 제거공정)

  • Yeon, Young-Heum;Choi, Seung-Ok;Jeong, Hwan-Kyung;Nam, Ki-Dea
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.75-81
    • /
    • 1999
  • HF purification performance of an ion exchange membrane(IEM) was evaluated with 0.5% HF spiked with 10ppb of Fe, Ni and Cu nitrates. The result show that after less than five turnovers through an IEM, the metallic impurity concentration drops below 1ppb. The decrease rate can be fitted to a model assuming the experimental tanks to be continuously stirred tank reaction and that the metallic impurity concentration after the IEM is a function of the single-pass purification efficiency of the membrane, the concentration before purification and the metals desorbed form the IEM. The Concentration after purification was investigated up to a cumulative Fe loading of 300ppb in the 23 liter recirculated loop. It increases linearly vs. cumulative loading and can be explained by the Langmuir theory resulting in a purification efficiency at the equilibrium of close to 99.5% in this loading regime.

Removal of Impurities from Metallurigical Grade Silicon by Acid Washing (금속급(金屬級) 실리콘에서 산세척(酸洗滌)에 의한 불순물(不純物)의 제거(除去))

  • Lee, Man-Seung;Kim, Dong-Ho
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.61-68
    • /
    • 2011
  • Impurity removal from metallurgical grade silicon by acid washing at $50^{\circ}C$ was investigated by employing sulfuric, nitric acid and the mixture of hydrochloric and hydrofluoric acid. Acid washing treatment had no effect on the removal of boron and the concentration of this clement after treatment was rather increased. In our experimental range, the removal percentage of phosphorus was 60%. In the acid washing with sulfuric and nitric acid, the removal percentage of major impurities was below 50%, which indicates that refining effect was not great with these acids. Acid washing with the mixture of hydrochloric and hydrofluoric acid led to removal percentage of higher than 90%. Data on the purity of silicon after acid washing at various conditions are reported.

Study on iron removal by S-HGMS from tungsten tailings

  • Jin, Jian-jiang;Li, Su-qin;Zhao, Xin;Guo, Peng-hui;Li, Fang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.17-20
    • /
    • 2020
  • Comprehensive utilization of tungsten tailings resources not only solves environmental problems but also creates huge economic benefits. The high content of iron impurity in tungsten tailings will have adverse effect on the downstream comprehensive utilization, whether flotation or pickling. In this paper, the Superconducting High Gradient Magnetic Separation(S-HGMS) is used to remove of Fe impurities from tungsten tailings. The optimal experimental parameters are as follows: background magnetic induction intensity is 3.0T, slurry flow velocity is 500ml/min. The Fe removal rate of Fe was 68.8% and the recovery rate was 59.53%.