Browse > Article
http://dx.doi.org/10.1007/s11814-018-0130-9

Pretreatment of low-grade poly(ethylene terephthalate) waste for effective depolymerization to monomers  

Kim, Yunsu (Department of Chemical & Biomolecular Engineering, KAIST)
Kim, Do Hyun (Department of Chemical & Biomolecular Engineering, KAIST)
Publication Information
Korean Journal of Chemical Engineering / v.35, no.11, 2018 , pp. 2303-2312 More about this Journal
Abstract
Pretreatment process of silica-coated PET fabrics, a major low-grade PET waste, was developed using the reaction with NaOH solution. By destroying the structure of silica coating layer, impurities such as silica and pigment dyes could be removed. The removal of impurity was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The pretreated PET fabric samples were used for depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET), by glycolysis with ethylene glycol (EG), and zinc acetate (ZnAc) catalyst. The quality of BHET was confirmed by DSC, TGA, HPLC and NMR analyses. The highest BHET yield of 89.23% was obtained from pretreated PET fabrics, while glycolysis with raw PET fabric yielded 85.43%. The BHET yield from untreated silica-coated PET fabrics was 60.39%. The pretreatment process enhances the monomer yield by the removal of impurity and also improves the quality of the monomer.
Keywords
Pretreatment; Low-grade PET Wastes; Glycolysis; Zinc Acetate; BHET;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Lamminmaki, E. Kentta, H. Rautkoski, J. Bacher, S. Teir, J. Kettle and J. Sarlin, J. Surf. Eng. Mater. Adv. Technol., 3, 224 (2013).
2 Y. J. Wu, V. Lovell, A. Pekarovicova, P. D Fleming and M. Joyce, J. Graphic Technol., 6, 6 (2013).
3 P. G. Demertzis, F. Johansson, C. Lievens and R. Franz, Packag. Technol. Sci., 10, 45 (1997).   DOI
4 M. Fertani-Gmati, K. Brahim, I. Khattech and M. Jemal, Thermochim. Acta, 594, 58 (2014).   DOI
5 S. A. Greenberg, J. Phys. Chem., 61, 960 (1957).   DOI
6 C. J. Brinker, J. Non. Cryst. Solids, 100, 31 (1988).   DOI
7 A. M. Al-Sabagh, F. Z. Yehia, Gh. Eshaq, A. M. Rabie and A. E. ElMetwall, Egypt J. Petroleum, 25, 53 (2016).   DOI
8 G. P. Karayannidis and D. S. Achilias, Macromol. Mater. Eng., 292, 128 (2007).   DOI
9 R. Lopez-Fonseca, I. Duque-Ingunza, B. Rivas, S. Arnaiz and J. I. Gutierrez-Ortiz, Polym. Degrad. Stab., 95, 1022 (2010).   DOI
10 L. Bartolome, M. Imran, B. G. Cho, W. A. Al-Masry and D. H. Kim, In: D. Achilias, Ed., Material Recycling - Trends and Perspectives, ISBN: 978-953-51-0327-1, InTech (2012).
11 Q. W. Chen, X. G. Li, Y. H. Zhang and Y. T. Qian, Adv. Mater., 25, 134 (2002).
12 G. Xi, M. Lu and C. Sun, Polym. Degrad. Stab., 87, 117 (2004).
13 S. Fakirov, In: O. Olabisi, ed. Handbook of thermoplastics, CRC Press, 449 (1994).
14 Y. B. Ryu and M. S. Lee, Korean J. Met. Mater., 56, 72 (2018).   DOI
15 M. M. Mahmoud, D. C. Folz, C. T. A. Suchicital and D. E. Clark, J. Am. Ceram. Soc., 95, 95 (2012).   DOI
16 F. Jendoubi, A. Mgaidi and M. E. Maaoui, Can. J. Chem. Eng., 75, 721 (1997).   DOI
17 A. M. Al-Sabagh, F. Z. Yehia, A. M. F. Eissa, M. E. Moustafa, Gh. Eshaq and A. M. Rabie, Polym. Degrad. Stab., 110, 364 (2014).   DOI
18 H. Wang, Y. Liu, Z. Li, X. Zhang, S. Zhang and Y. Zhang, Eur. Polym. J., 45, 1535 (2009).   DOI
19 Q. F. Yue, C. X. Wang, L. N. Zhang, Y. Ni and Y. X. Jin, Polym. Degrad. Stab., 96, 399 (2011).   DOI
20 M. R. Nabid, Y. Bide, N. Fereidouni and B. Etemadi, Polym. Degrad. Stab., 144, 434 (2017).   DOI
21 M. Imran, D. H. Kim, W. A. Al-Masry, A. Mahmood, A. Hassan, S. Haider and S. M. Ramay, Polym. Degrad. Stab., 98, 904 (2013).   DOI
22 Q. Wang, X. Yao, Y. Geng, Q. Zhou, X. Lu and S. Zhang, Green Chem., 17, 2473 (2015).   DOI
23 S. H. Park and S. H. Kim, Fash. Text., 1, 22 (2014).   DOI
24 R. Shamsi and G. M. M. Sadeghi, RSC Adv., 6, 38399 (2016).   DOI
25 S. R. Tharmapuram and S. A. Jabarin, Adv. Polym. Technol., 2, 147 (2003).
26 S. R. Tharmapuram and S. A. Jabarin, Adv. Polym. Technol., 2, 155 (2003).
27 D. E. Nikles and M. S. Farahat, Macromol. Mater. Eng., 290, 13 (2005).   DOI
28 S. C. Lee, Y. W. Sze and C. C. Lin, J. Appl. Polym. Sci., 55, 1271 (1995).   DOI
29 P. K. George, K. N. Alexandros, D. S. Irini, N. B. Dimitris and S. A. Dimitris, Macromol. Mater. Eng., 291, 1338 (2006).   DOI
30 M. Li, Y. Huang, T. Yu, S. Chen, A. Ju and M. Ge, RSC Adv., 4, 46476 (2014).   DOI
31 L. Bartolome, M. Imran, K. G. Lee, A. Sangalang, J. K. Ahn and D. H. Kim, Green Chem., 16, 279 (2014).   DOI
32 A. M. Al-Sabagh, F. Z. Yehia, D. R. K. Harding, G. Eshaq and A. E. ElMetwally, Green Chem., 18, 3997 (2016).   DOI
33 G. Park, L. Bartolome, K. G. Lee, S. J. Lee, D. H. Kim and T. J. Park, Nanoscale, 4, 3879 (2012).   DOI
34 V. M. Gun’ko, I. F. Mironyuk, V. I. Zarko, V. V. Turv, E. F. Voronin, E. M. Pakhlov, E. V. Goncharuk, R. Leboda, J. Skubiszewska-Zieba, W. Janusz, S. Chibowski, Y. N. Levchuk and A. V. Klyuevaz, J. Colloid Interface Sci., 242, 90 (2001).   DOI
35 S. Gupta, Indian J. Fibre Text. Res., 26, 156 (2001).
36 Q. Fan, Y. K. Kim, M. K. Perruzzi and A. F. Lewis, J. Imaging Sci. Technol., 47, 400 (2003).
37 X. Wu, Y. Wang, W. Yang, B. Xie, M. Yang and W. Dan, Soft Matter, 8, 10457 (2012).   DOI
38 J. Nordstrom, A. Matic, J. Sun, M. Forsyth and D. R. MacFarlane, Soft Matter, 6, 2293 (2010).   DOI
39 S. Kim, J. H. Sung, K. H. Ahn and S. J. Lee, Langmuir, 25, 6155 (2009).   DOI