• Title/Summary/Keyword: Impulsive response

Search Result 114, Processing Time 0.021 seconds

Study on the Dynamic Deformation Characteristics of a Cantilever Beam Undergoing Impulsive Force Using Wavelet Transformation (웨이블렛 변환을 이용한 충격력을 받는 외팔 보의 동적 변형 특성 연구)

  • Park, Ho-Young;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.943-947
    • /
    • 2008
  • Dynamic response characteristics of a beam undergoing impulsive force are investigated using the wavelet transform method in this study. When an impulse is applied to an arbitrary position of a beam, it will generate a structural deformation wave. The characteristics of the wave are changing in the domain of time and space. The maximum amplitude of each natural frequency mode and the time to reach the maximum amplitude are obtained in this study. The effects of the location of impulse on the variations of the dynamic characteristics is also investigated.

  • PDF

DYNAMICS OF A ONE-PREY AND TWO-PREDATOR SYSTEM WITH TWO HOLLING TYPE FUNCTIONAL RESPONSES AND IMPULSIVE CONTROLS

  • Baek, Hunki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.151-167
    • /
    • 2012
  • In this paper, we investigate the dynamic behaviors of a one-prey and two-predator system with Holling-type II functional response and defensive ability by introducing a proportion that is periodic impulsive harvesting for all species and a constant periodic releasing, or immigrating, for predators at different fixed time. We establish conditions for the local stability and global asymptotic stability of prey-free periodic solutions by using Floquet theory for the impulsive equation, small amplitude perturbation skills. Also, we prove that the system is uniformly bounded and is permanent under some conditions via comparison techniques. By displaying bifurcation diagrams, we show that the system has complex dynamical aspects.

The vertical spanning strip wall as a coupled rocking rigid body assembly

  • Sorrentino, Luigi;Masiani, Renato;Griffith, Michael C.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.433-453
    • /
    • 2008
  • The equation of motion of a one way (vertical) spanning strip wall, as an assembly of two rigid bodies, is presented. Only one degree of freedom is needed to completely describe the wall response as the bodies are assumed to be perfectly rectangular and are allowed to rock but not to slide horizontally. Furthermore, no arching action occurs since vertical motion of the upper body is not restrained. Consequently, the equation of motion is nonlinear, with non constant coefficients and a Coriolis acceleration term. Phenomena associated with overburden to self weight ratio, motion triggering, impulsive energy dissipation, amplitude dependency of damping and period of vibration, and scale effect are discussed, contributing to a more complete understanding of experimental observations and to an estimation of system parameters based on the wall characteristics, such as intermediate hinge height and energy damping, necessary to perform nonlinear time history analyses. A comparison to a simple standing, or parapet, wall is developed in order to better highlight the characteristics of this assembly.

Thermal effects on nonlinear dynamic characteristics of polymer-CNT-fiber multiscale nanocomposite structures

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.403-415
    • /
    • 2018
  • In the present study, nonlinear dynamic response of polymer-CNT-fiber multiscale nanocomposite plate resting on elastic foundations in thermal environments using the finite element method is performed. In this regard, the governing equations are derived based on Inverse Hyperbolic Shear Deformation Theory and von $K{\acute{a}}rm{\acute{a}}n$ geometrical nonlinearity. Three type of distribution of temperature through the thickness of the plate namely, uniform linear and nonlinear are considered. The considered element is C1-continuous with 15 DOF at each node. The effective material properties of the multiscale composite are calculated using Halpin-Tsai equations and fiber micromechanics in hierarchy. The carbon nanotubes are assumed to be uniformly distributed and randomly oriented through the epoxy resin matrix. Five types of impulsive loads are considered, namely the step, sudden, triangular, half-sine and exponential pulses. After examining the validity of the present work, the effects of the weight percentage of SWCNTs and MWCNTs, nanotube aspect ratio, volume fraction of fibers, plate aspect, temperature, elastic foundation parameters, distribution of temperature and shape of impulsive load on nonlinear dynamic response of CNT reinforced multi-phase laminated composite plate are studied in details.

A Study on Clothing Shopping Motivations and store - Preferred Stores and Store Atmosphere - (소비자의 의류쇼핑동기유형과 점포에 관한 연구 -선호점포와 점포분위기-)

  • 박수경;임숙자
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.3
    • /
    • pp.414-428
    • /
    • 1996
  • This study intends to ascertain the importance of store atmosphere when construcing store marketing strategies for store differentiation. And it is studied by classifying consumer groups according to clothing shopping motivations, comparing store atmosphere assessment and emotion response of preferred stores, and analyzing the influence store atmosphere has on store preference or impulsive purchase. The subject of this study are women in their twenties living in Seoul, 255 career women and 233 college students totaling 458, and model sampling is done by convenient sampling taking into account the type of their occupation and major. Modified survey based on references and former studies is used, and using SAS packages, methods. The results of data analysis are as follows. 1. Consumer groups are classified into the following four subdivisions: shopping involvement, leisure pursuit, financial, and shopping unconcern group. The stores women in twenties use most frequently for shopping are department stores, speciality stores, common market, discount stores, and wholesale markets, and significant difference are shown between consumer groups. 2. Consumer responses for store atmosphere preferences are shown significantly among groups when concerned with store preferences. 3. Images of store atmosphere as factor analyzed into environment factor, kindness factor, and decoration factor, Environment factor is most highly estimated in speciality stores, kindness factor in department stores, and decoration factor in common markets. 4. Leisure pursuit group is assessed to be most influenced by store atmosphere in store seleciton, impulsive purchase, and after-purchase shopping behavior, and impulsive purchase is shown highly in department stores and speciality stores.

  • PDF

A STUDY ON THE HYDROELASTIC RESPONSE OF A PLATE UNDER IMPULSIVE PRESSURES DUE TO BREAKING WAVES

  • Park, Hang-Shoon;Lee, Dong-Yeon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • In this paper, breaking waves are generated in a 2-D wave tank and simulated by using a higher-order boundary element method. A piston-type wavemaker is operated by signals composed of elementary waves. The phase of elementary waves is determined by the linear theory such that they are focused to a prescribed position. Calculated plunging waves coincide well with experiment. A steel box with different plate thicknesses is installed at a predetermined position in the tank. Measured impulsive pressures due to breaking waves are found to be 0.8-1.2$\rho$C2, where $\rho$ corresponds to water density and C to wave celerity. The transverse displacement of the plate is described in terms of modal eigenfunctions. The natural frequencies measured by impact tests in air for thin plate coincide with the computational and theoretical values. The radiationpotential due to plate vibration is derived and the radiation force is expressed in terms of hydroelastic added mass and damping forces. Comparison of natural frequencies of plate in water proves that hydroelastic added mass and damping are properly considered. The measured strain due to regular waves supports the calculated one, but there are apparent discrepancies between theory and experiment in the impulsive case.

Dynamic Behavior of Cylindrical Pile Subjected to Impulsive (衝擊碎波力의 작용에 의한 圓形파일의 動的擧動)

  • 전인식;심재설
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 1999
  • The Morison's formula has been commonly used in the determination of wave forces of sinusoidal waves acting on coastal or ocean structures of pile-supported type. In the case that plunging breakers are incident, the structures are subjected to impulsive breaking wave forces which are normally much larger than the Morison's. However, the impulsive breaking wave forces act in a very short time, and hence a dynamic structural analysis should be done to determine whether or not to include the forces in the design force items. In the present study, numerical methods for calculating the dynamic response of a vertically located cylindrical pile are developed. Static and dynamic displacements are then compared through several example analyses varying the structural properties of pile.

  • PDF

Beat Maps of a Slightly Asymmetric Ring (미소 비대칭 링의 맥놀이 지도)

  • 박석균;박기영;서백수;김석현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1169-1176
    • /
    • 2002
  • Analytical model of beat response is derived on a slightly asymmetric ring and is veryfied by experiment. The asymmetric ring is a simplified model used to explain the beat property of a Korean bell. The asymmetric ring has mode pair having slight frequency difference in each radial mode. Each mode pair produces beat phenomenon by the interaction of the two close frequency components. Based on the analytical model, beat maps are first proposed and characteristics of beat on the circumference are detaily explained.

  • PDF

Analysis of Impact Responses Considering Sensor Dynamics (센서 동역학을 고려한 충격응답해석)

  • B. J. Ryu;K. Y. Ahn;B. H. Kwon;I. S. Oh;Lee, G. S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.373.1-373
    • /
    • 2002
  • Impact is the most common type of dynamic loading conditions that give rise to impulsive forces and affects the vibrational characteristics of mechanical systems. Since the impact force and response are measured indirectly through the sensors, it is difficult to predict the impact force and acceleration. In this study, contact force model based on the Hertz law is proposed in order to predict the impact force correctly. (omitted)

  • PDF

Chaotic Response of a Spherical Shell to Impulsive Loading (충격력을 받는 구형 쉘의 혼돈거동 해석)

  • 이재영;강영철
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.167-174
    • /
    • 1997
  • Engineers must be aware of possible sources of chaotic behavior. They may render conventional design predictions untrustworthy and potentially unsafe because of the sensitivity to initial conditions. Dynamic responses of a spherical shell subjected to impulsive loading which act on the center are analyzed using the finite element method. The chaotic responses are identified by the standard methods, such as displacement-time histories, Poincare maps, and phase diagrams. The responses are chaotic, but, not so sensitive to the initial conditions, and the characteristics of responses are not changed with time, in contrast to the case of the responses of beam. The Poincare points scattered in the limited area represent that the responses are chaotic, but do not show the geometric structures. The snap-through phenomena of the shell to the side of the direction of the load or of the opposite direction, is analysed by using the energy diagram.

  • PDF