• 제목/요약/키워드: Impulsive dynamic systems

검색결과 16건 처리시간 0.022초

PRACTICAL ${\phi}_0$-STABILITY FOR IMPULSIVE DYNAMIC SYSTEMS WITH TIME SCALES AND INITIAL TIME DIFFERENCE

  • Chen, Weisong;Han, Zhenlai;Sun, Shurong;Li, Tongxing
    • Journal of applied mathematics & informatics
    • /
    • 제29권3_4호
    • /
    • pp.891-900
    • /
    • 2011
  • In this paper, we study the impulsive dynamic systems on time scales with initial time difference. By employing cone-valued Lyapunov functions, some comparison theorems and several practical ${\phi}_0$-stability criteria for impulsive system on time scales with initial time difference are obtained.

충격하중을 받는 시스템의 케인 방법을 이용한 다물체 동역학 해석 (Dynamic Analysis of Multibody Systems Undertaking Impulsive Force using Kane's Method)

  • 김상국;박정훈;유홍희
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.169-176
    • /
    • 1998
  • A method for the dynamic analysis of multibody systems undertaking impulsive force is introduced in this paper. A partial velocity matrix based on Kane's method is introduced to reduce the number of equations to be solved. Only minimum number of equations of motion can be obtained by using the partial velocity matrix. This reduces the computational effort significantly to obtain the dynamic response of the system. At the very moment of the impulse, instead of using the numerical integrator to solve the equations of motion, the impulse and momentum principle is used to obtain the dynamic response. The impulse as wall as the reaction force acting on the kinematic joints can easily calculated too.

  • PDF

DYNAMIC ANALYSIS OF A PERIODICALLY FORCED HOLLING-TYPE II TWO-PREY ONE-PREDATOR SYSTEM WITH IMPULSIVE CONTROL STRATEGIES

  • Kim, Hye-Kyung;Baek, Hun-Ki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권4호
    • /
    • pp.225-247
    • /
    • 2010
  • In this paper, we establish a two-competitive-prey and one-predator Holling type II system by introducing a proportional periodic impulsive harvesting for all species and a constant periodic releasing, or immigrating, for the predator at different fixed time. We show the boundedness of the system and find conditions for the local and global stabilities of two-prey-free periodic solutions by using Floquet theory for the impulsive differential equation, small amplitude perturbation skills and comparison techniques. Also, we prove that the system is permanent under some conditions and give sufficient conditions under which one of the two preys is extinct and the remaining two species are permanent. In addition, we take account of the system with seasonality as a periodic forcing term in the intrinsic growth rate of prey population and then find conditions for the stability of the two-prey-free periodic solutions and for the permanence of this system. We discuss the complex dynamical aspects of these systems via bifurcation diagrams.

Analytical assessment of elevated tank natural period considering soil effects

  • Maedeh, Pouyan Abbasi;Ghanbari, Ali;Wu, Wei
    • Coupled systems mechanics
    • /
    • 제5권3호
    • /
    • pp.223-234
    • /
    • 2016
  • The main purpose of current study is to find the soil effects on natural period of elevated tank. The coupled analytical method is used to assess in this study. The current study presented models which are capable to consider the soil dynamic stiffness changes and fluid- structure interaction effects on natural period of elevated tanks. The basic of mentioned models is extracted from elastic beam and lumped mass theory. The finite element is used to verify the results. It is observed that, external excitation can change the natural period of elevated tanks. Considering the increase of excitation frequency, the natural period will be decreased. The concluded values of natural period in case of soft and very soft soil are more affected from excitation frequency values. The high range of excitation frequency may reduce the natural period values. In addition it is observed that the excitation frequency has no significant effect on convective period compare with impulsive period.

센서 동역학을 고려한 충격응답해석 (Analysis of Impact Responses Considering Sensor Dynamics)

  • B. J. Ryu;K. Y. Ahn;B. H. Kwon;I. S. Oh;Lee, G. S.
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.373.1-373
    • /
    • 2002
  • Impact is the most common type of dynamic loading conditions that give rise to impulsive forces and affects the vibrational characteristics of mechanical systems. Since the impact force and response are measured indirectly through the sensors, it is difficult to predict the impact force and acceleration. In this study, contact force model based on the Hertz law is proposed in order to predict the impact force correctly. (omitted)

  • PDF

Comparative study on dynamic analyses of non-classically damped linear systems

  • Greco, Annalisa;Santini, Adolfo
    • Structural Engineering and Mechanics
    • /
    • 제14권6호
    • /
    • pp.679-698
    • /
    • 2002
  • In this paper some techniques for the dynamic analysis of non-classically damped linear systems are reviewed and compared. All these methods are based on a transformation of the governing equations using a basis of complex or real vectors. Complex and real vector bases are presented and compared. The complex vector basis is represented by the eigenvectors of the complex eigenproblem obtained considering the non-classical damping matrix of the system. The real vector basis is a set of Ritz vectors derived either as the undamped normal modes of vibration of the system, or by the load dependent vector algorithm (Lanczos vectors). In this latter case the vector basis includes the static correction concept. The rate of convergence of these bases, with reference to a parametric structural system subjected to a fixed spatial distribution of forces, is evaluated. To this aim two error norms are considered, the first based on the spatial distribution of the load and the second on the shear force at the base due to impulsive loading. It is shown that both error norms point out that the rate of convergence is strongly influenced by the spatial distribution of the applied forces.

전동 조향 장치와 차량의 동시 시뮬레이션 기술 개발 (Co-Simulation Technology Development with Electric Power Steering System and Full Vehicle)

  • 장봉춘;소상균
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.94-100
    • /
    • 2004
  • Most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the electric power system has been developed and become widely equipped in passenger vehicles. In this research the simulation integration technique for an electric power steering system with MATLAB/SIMULINK and a full vehicle model with ADAMS has been developed. A full vehicle model interacted with electronic control unit algorithm is concurrently simulated with an impulsive steering wheel torque input. The dynamic responses of vehicle chassis and steering system are evaluated. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

센서 동역학을 고려한 충격응답해석 (Analysis of Impact Responses Considering Sensor Dynamics)

  • 류봉조;권병희;안길영;오일성;이규섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.731-736
    • /
    • 2002
  • Impact is the most common type of dynamic loading conditions that give rise to impulsive forces and affects the vibrational characteristics of mechanical systems . Since the real impact force and acceleration at the contact surface are measured indirectly through the sensors, the measured outputs can be a little different from the real impact responses. In this study, the contact force model based on the Hertz law is proposed in order to predict the impact force correctly. To investigate the influence of the position of the sensor attached to the impacting bodies, the two kinds of sensors were used. Finally, the contact force model obtained by drop test was applied to predict the impact force between the moving part and the stopper in magnetic contactor.

  • PDF

EPS와 완전차량모델의 동시시뮬레이션 기술에 관한 연구 (Study on Concurrent Simulation Technique of EPS and A Full Car Model)

  • 장봉춘
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 추계학술발표논문집 2부
    • /
    • pp.785-787
    • /
    • 2010
  • It is well known that most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the Electric Power System(EPS) or Motor Driven Power System(MDPS) has widely equipped in passenger vehicles. In this research the concurrent simulation technique for an EPS system with MATLAB/SIMULINK and a full vehicle model has been developed. The dynamic responses of vehicle chassis and steering system are evaluated. Then, a full vehicle model interacted with EPS control is concurrently simulated with an impulsive steering wheel torque input to analyze the stability of 'free control' or hands free motion for SUV. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

  • PDF

Impact control of redundant manipulators using null-space dynamucs

  • Chung, W.J.;Choi, S.L.;kim, I.H.;Chung, G.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.89-94
    • /
    • 1994
  • This paper presents an impact control algorithm for reducing the potentially damaging effects by interation of redundant manipulators with their environments. In the. proposed control algorithm, the redundancy is resolved at the torque level by locally minimizing joint torque, subject to tire operational space dynamic formulation which maps tire joint torque set into the operational forces. For a given pre-impact velocity of the manipulator, the proposed approach is on generating joint space trajectories throughout the motion near the contact which instantaneously minimize the impulsive force which is a scalar function of manipulator's configurations. This is done by using the null space dynamics which does not affect the motion of an end-effector. The comparative evaluation of the proposed algorithm with a local torque optimization algorithm without reducing impact is performed by computer simulation. The simulation results illustrate the effectiveness of the algorithm in reducing both the effects of impact and large torque requirements.

  • PDF