• 제목/요약/키워드: Impulse wave

검색결과 239건 처리시간 0.026초

DMB 시스템에서 UWB 전파가 서비스에 미치는 영향에 관한 연구 (A Study of Limitation of Service Area by UWB Transmission Jamming in DMB System)

  • 김동옥
    • 정보통신설비학회논문지
    • /
    • 제4권2호
    • /
    • pp.1-8
    • /
    • 2005
  • 본 논문에서는 UWB 시스템이 근처의 단일 장비 또는 집단 장비와의 간섭영향이 DMB 서비스에 미치는 영향에 관한 연구를 하였다. 이를 위해 UWB 시스템에서 방사되는 불요 방사 레벨에 따른 신호의 간섭을 비롯한 전파 간섭 특성이 인접 대역인 2.6425GHz SDMB(Satellite Digital Multimedia Broadcasting)와, In-band 대역인 3.4125GHz 방송 중계망과 서비스에 미치는 간섭 영향의 정도를 비교 분석하였으며, 방송 중계망과 간섭 측정 장비의 변조방식은 Impulse 방식과 OFDM 방식을 사용하였다. SDMB 시스템에서 Impulse 방식은 2m 지점에서부터 간섭 영향이 발생하여 1.4m 지점에서 방송 신호 수신이 가능한 $BER=1{\times}10^4$ 이었으며, OFDM 방식은 0.8m 지점에서부터 간섭 영향을 받아 0.5m 지점에서 방송 신호 수신이 가능한 $BER=1{\times}10^4$ 이었다. 또한 Gap-Filler 중심 주파수에 대해서는 0.01m 이상 이격 시는 간섭영향이 없었다. 따라서 소출력인 UWB 시스템의 전파가 DMB 서비스에 간섭 영향 없이 시스템에 적용하기 위해서는 Impulse 방식의 UWB 시스템보다 OFDM 방식의 UWB 시스템이 간섭 영향이 적다는 것을 확인하였다.

  • PDF

방송통신 시스템에서 UWB 전파가 서비스에 미치는 영향에 관한 연구 (A Study of Limitation of Service Area by UWB Transmission Jamming in Broadcasting Communication System)

  • 박노진
    • 정보통신설비학회논문지
    • /
    • 제7권1호
    • /
    • pp.23-31
    • /
    • 2007
  • 본 논문에서는 UWB 시스템이 근처의 단일 장비 또는 집단 장비와의 간섭영향이 방송통신서비스에 미치는 영향에 관한 연구를 하였다. 이를 위해 UWB 시스템에서 방사되는 불요 방사 레벨에 따른 신호의 간섭을 비롯한 전파 간섭 특성이 인접 대역인 2.6425GHz SDMB(Satellite Digital Multimedia Broadcasting)와, In-band 대역인 3.4125GHz 방송 중계망과 서비스에 미치는 간섭영향의 정도를 비교 분석하였으며, 방송 중계망과 간섭측정 장비의 변조방식은 Impulse 방식과 OFDM 방식을 사용하였다. SDMB 시스템에서 Impulse 방식은 2m 지점에서부터 간섭 영향이 발생하여 1.4m 지점에서 방송 신호 수신이 가능한 $BER\;=\;1{\times}\;10^{-4}$ 이었으며, OFDM 방식은 0.8m 지점에서부터 간섭 영향을 받아 0.5m 지점에서 방송 신호 수신이 가능한 $BER\;=\;1{\times}\;10^{-4}$ 이었다. 또한 Gap-Filler 중심 주파수에 대해서는 0.01m 이상 이격 시는 간섭영향이 없었다. 따라서 소출력인 UWB 시스템의 전파가 방송통신서비스에 간섭 영향 없이 시스템에 적용하기 위해서는 Impulse 방식의 UWB 시스템보다 OFDM 방식의 UWB 시스템이 간섭 영향이 적다는 것을 확인하였다.

  • PDF

Structural Response of Offshore Plants to Risk-Based Blast Load

  • Heo, YeongAe
    • Architectural research
    • /
    • 제15권3호
    • /
    • pp.151-158
    • /
    • 2013
  • Offshore oil and gas process plants are exposed to hazardous accidents such as explosion and fire, so that the structural components should resist such accidental loads. Given the possibilities of thousands of different scenarios for the occurrence of an accidental hazard, the best way to predict a reasonable size of a specific accidental load would be the employment of a probabilistic approach. Having the fact that a specific procedure for probabilistic accidental hazard analysis has not yet been established especially for explosion and fire hazards, it is widely accepted that engineers usually take simple and conservative figures in assuming uncertainties inherent in the procedure, resulting either in underestimation or more likely in overestimation in the topside structural design for offshore plants. The variation in the results of a probabilistic approach is determined by the assumptions accepted in the procedures of explosion probability computation, explosion analysis, and structural analysis. A design overpressure load for a sample offshore plant is determined according to the proposed probabilistic approach in this study. CFD analysis results using a Flame Acceleration Simulator, FLACS_v9.1, are utilized to create an overpressure hazard curve. Moreover, the negative impulse and frequency contents of a blast wave are considerably influencing structural responses, but those are completely ignored in a widely used triangular form of blast wave. An idealistic blast wave profile deploying both negative and positive pulses is proposed in this study. A topside process module and piperack with blast wall are 3D FE modeled for structural analysis using LS-DYNA. Three different types of blast wave profiles are applied, two of typical triangular forms having different impulse and the proposed load profile. In conclusion, it is found that a typical triangular blast load leads to overestimation in structural design.

웨이블릿 교차상관관계를 이용한 변형체 선박의 휘핑 응답 식별 (Identification of Whipping Response using Wavelet Cross-Correlation)

  • 김유일;김정현;김용환
    • 대한조선학회논문집
    • /
    • 제51권2호
    • /
    • pp.122-129
    • /
    • 2014
  • Identification of the whipping response out of the combined wave-vibration response of a flexible sea going vessel is one of the most interesting research topic from ship designer's point of view. In order to achieve this goal, a novel methodology based on the wavelet cross-correlation technique was proposed in this paper. The cross-correlation of the wavelet power spectrum averaged across the frequency axis was introduced to check the similarity between the combined wave-vibration response and impulse response. The calculated cross-correlation of the wavelet power spectrum was normalized by the auto-correlation of the each spectrum with zero time lag, eventually providing the cross-correlation coefficient that stays between 0 and 1, precisely indicating the existence of the impulse response buried in the combined wave-vibration response. Additionally, the weight function was introduced while calculating the cross-correlation of the two spectrums in order to filter out the signal of lower frequency so that the accuracy of the similarity check becomes as high as possible. The validity of the proposed methodology was checked through the application to the artificially generated ideal combined wave-vibration signal, together with the more realistic signal obtained by running 3D hydroelasticity program WISH-Flex. The correspondence of the identified whipping instances between the results, one from the proposed method and the other from the calculated slamming modal force, was excellent.

Study on slamming pressure calculation formula of plunging breaking wave on sloping sea dike

  • Yang, Xing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권4호
    • /
    • pp.439-445
    • /
    • 2017
  • Plunging breaker slamming pressures on vertical or sloping sea dikes are one of the most severe and dangerous loads that sea dike structures can suffer. Many studies have investigated the impact forces caused by breaking waves for maritime structures including sea dikes and most predictions of the breaker forces are based on empirical or semi-empirical formulae calibrated from laboratory experiments. However, the wave breaking mechanism is complex and more research efforts are still needed to improve the accuracy in predicting breaker forces. This study proposes a semi-empirical formula, which is based on impulse-momentum relation, to calculate the slamming pressure due to plunging wave breaking on a sloping sea dike. Compared with some measured slamming pressure data in two literature, the calculation results by the new formula show reasonable agreements. Also, by analysing probability distribution function of wave heights, the proposed formula can be converted into a probabilistic expression form for convenience only.

최소 위상 조건을 적용한 음향 임피던스 측정 (Application of Minimum Phase Condition to Acoustic Impedance Measurement)

  • 임병덕;허준혁
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.855-860
    • /
    • 2005
  • For the accurate measurement of acoustic properties of a surface, efforts have been made to reduce errors caused by external disturbance. If the reflection coefficient is considered as a transfer function between reflected wave and incident wave, causality is required between them and the reflection coefficient should be of minimum phase. In this thesis, the minimum phase condition is applied to measure correct reflection coefficient. The reflection coefficient is approximated as a rational function in the Z domain by minimizing the sum square error. Then the minimum phase reflection coefficient is reconstructed using the distribution of poles and zeros of the reflection coefficient model. The incident wave, the reflected wave and the impulse response function of causality are recalculated from the minimum phase reflection coefficient for further applications.

  • PDF

Wave propagation of a functionally graded beam in thermal environments

  • Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1421-1447
    • /
    • 2015
  • In this paper, the effect of material-temperature dependent on the wave propagation of a cantilever beam composed of functionally graded material (FGM) under the effect of an impact force is investigated. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. Material properties of the beam are temperature-dependent and change in the thickness direction. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Euler-Bernoulli beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain and frequency domain by using Newmark average acceleration method. In order to establish the accuracy of the present formulation and results, the comparison study is performed with the published results available in the literature. Good agreement is observed. In the study, the effects of material distributions and temperature rising on the wave propagation of the FGM beam are investigated in detail.

불규칙파 중에서 돌핀 계류된 바아지식 해상공장에 대한 비선형 응답 해석 (Nonlinear Response Analyses for a Barge-Mounted Plant with Dolphin Mooring Systems in Irregular Waves)

  • 이호영;신현경;염재선
    • 한국해양공학회지
    • /
    • 제14권4호
    • /
    • pp.1-8
    • /
    • 2000
  • The time simulation of motion responses of dolphin-moored BMP in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and solved in time domain by using the Newmark $\beta$ method. The hydrodynamic coefficient and first order wave exciting forces involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The second order wave drift forces and mooring for dolphin system are taken into account. As for numerical example, time domain analysis are carried out for a BMP in irregular wave condition.

  • PDF

비례제어밸브와 혼합제어기를 이용한 혈압 시뮬레이터의 구현 (Implement of Blood Pressure Simulator Using Proportional Control Valve and Hybrid Controller)

  • 이규원;김철한;한기봉;김호종;전계록
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2005년도 춘계학술대회 논문집
    • /
    • pp.149-153
    • /
    • 2005
  • In the cardiovascular system, the waveform of the pulsatory blood pressure appears variously due to the cardiac impulse and compliance of blood vessels and arm tissue. We have constructed a blood pressure simulator to investigate effects of mechanical properties of artery walls and tissue on blood pressure measurements. The blood pressure simulator is designed to reproduce wave forms of blood pressure in human arteries. To minimize tracking error, we use a linear control valve, and adapt a hybrid control scheme which consists of a feedback controller and a feedforward controller. Any form of the pressure wave can be reproduced, changing function of the wave form in the computer connected to the simulator for control. From experiments, it has been shown that the simulator reproduces wave forms very well, and that the hybrid scheme adapted is superior to the feedback controller.

  • PDF

Multi-level approach for parametric roll analysis

  • Kim, Tae-Young;Kim, Yong-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.53-64
    • /
    • 2011
  • The present study considers multi-level approach for the analysis of parametric roll phenomena. Three kinds of computation method, GM variation, impulse response function (IRF), and Rankine panel method, are applied for the multi-level approach. IRF and Rankine panel method are based on the weakly nonlinear formulation which includes nonlinear Froude-Krylov and restoring forces. In the computation result of parametric roll occurrence test in regular waves, IRF and Rankine panel method show similar tendency. Although the GM variation approach predicts the occurrence of parametric roll at twice roll natural frequency, its frequency criteria shows a little difference. Nonlinear roll motion in bichromatic wave is also considered in this study. To prove the unstable roll motion in bichromatic waves, theoretical and numerical approaches are applied. The occurrence of parametric roll is theoretically examined by introducing the quasi-periodic Mathieu equation. Instability criteria are well predicted from stability analysis in theoretical approach. From the Fourier analysis, it has been verified that difference-frequency effects create the unstable roll motion. The occurrence of unstable roll motion in bichromatic wave is also observed in the experiment.