• Title/Summary/Keyword: Impulse technique

Search Result 259, Processing Time 0.027 seconds

Factors Affecting Acoustic Responses of Egg Shell (난각의 음향반응에 영향을 주는 인자)

  • 조한근;최완규
    • Journal of Biosystems Engineering
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 1997
  • A nondestructive quality inspection technique using acoustic impulse response method was studied to investigate the feasibility of egg shell inspection. An experimental system was built to generate impact force, to measure the response signal and to analyze the frequency spectrum. This system includes an impulse generating unit, an egg holding seat, a microphone with preamplifier, and a digital oscilloscope connected to Personal Computer by RS-232C interface. The factors such as impulse generating method, egg holding method, and sensor location were evaluated by analyzing the power spectrum density of the measured signal. The results obtained are summarized as follows : 1. From the sampled eggs, the proper conditions for detecting damaged eggs were found as followings; ceramic for the impact ball material, rubber for egg seat material, 20 degrees for an impact angle of pendulum, 10mm for the distance between egg and sensor, the sharp side for impacting part, and 180 degrees for the location of sensor. 2. Examination of the Fourier transformed analysis in beth normal and damaged eggs revealed that those factors such as the resonant frequency, a number of peak frequencies and the magnitude of power spectrum were important to detect damaged eggs.

  • PDF

Generalized Directional Morphological Filter Design for Noise Removal

  • Jinsung Oh;Heesoo Hwang;Changhoon Lee;Younam Kim
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.115-119
    • /
    • 2002
  • In this paper we present a generalized directional morphological filtering algorithm for the removal of impulse noise, which is based on a combination of impulse noise detection and a weighted rank-order morphological filtering technique. For salt (or pepper) noise suppression, the generalized directional opening (or closing) filtering of the input signal is selectively used. The detection of impulse noise can be done by the geometrical difference of opening and closing filtering. Simulations show that this new filter has better detail feature preservation with effective noise reduction compared to other nonlinear filtering techniques.

  • PDF

Spectral Analysis of Rectangular, Hanning, Hamming and Kaiser Window for Digital Fir Filter

  • Gautam, Ganesh;Shrestha, Surendra;Cho, Seongsoo
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.138-144
    • /
    • 2015
  • Digital filters are extensively used in the world of communication. In order to design a digital finite impulse response (FIR) filter that satisfies all the required conditions is challenging. In this paper, design techniques of digital low pass FIR filters using Rectangular window method, Hamming window, Hanning window, and Optimal Parks McClellan method are presented. The stability, number of components required and filter coefficients are demonstrated for different design techniques. It is demonstrated that filter design using hamming window is comparatively better than rectangular and hanning window though the components required for all of the windowing technique are same, hamming shows higher stability. The stability is shown with the help of magnitude and phase spectrum of each window. Simulation is carried out using MATLAB and comparisons are made entirely based on the output of the simulation.

Improved Cancellation of Impulse Noise Using Rank-Order Method (Rank-Order 방법을 이용한 개선된 임펄스 잡음 제거)

  • Ko, Kyung-Woo;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • This paper proposes a cancellation algorithm of impulse noise using a rank-order method. The proposed method is a fast and simple algorithm that is composed of two parts. The first part involves noise detection using a fuzzy technique, where an image is divided into RGB color channels. Then every pixel in each color channel is investigated and assigned a probability indicating its chances of being a noise pixel. At this time, the rank order method using a noise-detection mask is utilized for accurate noise detection. Thereafter, the second part involves noise-cancellation, where each noise-pixel value in an image is replaced in proportion to its fuzzy probability. Through the experiments, both the conventional and proposed methods were simulated and compared. As a result, it is shown that proposed method is able to detect noisy pixels more accurately, and produce resulting images with high PSNR values.

A Technique for Generation of Template Signal using Stable Minimum-Phase ARMA System Modeling for Coherent Impulse Communication Systems (안정성을 갖는 최소 위상 ARMA시스템 모델링을 이용한 코히어런트 임펄스 통신 수신단 참조 신호 발생 기법)

  • Lee Won Cheol;Park Woon Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1606-1616
    • /
    • 2004
  • This paper introduces a technique for generating an appropriate template signal via modeling of minimum-phase stable ARMA (Auto-Regressive Moving Average) system for coherent impulse communication systems. It has been well known that the transmitted impulse signal becomes deformed because of dispersive and resonant characteristics. Accordingly, in spite of using ideal template signal at the correlator, these impairments degrade overall performance attributed to low level of coherence. To increase the degree of coherence, our proposed scheme realizes A3U system derived by Gaussian pulse signal, which simulates the overall characteristic of transfer function in between transmit and receive wideband antennas so as to generate an appropriate template signal in a form of output. The performance of proposed scheme will be shown in results from computer simulations to verify its affirmative impact on impulse communication system with regarding several distinctively shaped antennas.

A Compensation Technique for Dispersive and Resonant Wideband Antenna using Stable Minimum-Phase ARMA System Modeling for Coherent Impulse Communication Systems (안정성을 갖는 최소 위상 ARMA 시스템 모델링을 이용한 코히어런트 임펄스 통신 시스템의 광대역 안테나 확산 및 공진 특성 보상 기법)

  • Lee Won-Cheol;Park Woon-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.983-995
    • /
    • 2004
  • This paper introduces a pre-compensation filter for compensating dispersive and resonant properties experienced along the usage of non-ideal wideband antennas in impulse communication systems. It has been well blown that the transmitted impulse signal becomes deformed because of dispersive and resonant characteristics. Accordingly, in spite of using ideal template signal at the correlator in coherent receiver, these impairments degrade overall performance attributed to low level of coherence. To overcome this problem this paper exploits a realization technique of pre-compensation filter purposely installed at transmitter whose stability is automatically guaranteed because it has an inversion form of minimum-phase ARMA (Auto-Regressive Moving Average) system. The performance of proposed scheme will be shown in results from computer simulations to verify its affirmative impact on impulse communication system with regarding several distinctively shaped antennas.

Short-Array Beamforming Technique for the Investigation of Shear-Wave Velocity at Large Rockfill Dams (대형 사력댐에서의 전단파속도 평가를 위한 단측선 빔형성기법)

  • Joh, Sung-Ho;Norfarah, Nadia Ismail
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.207-218
    • /
    • 2013
  • One of the input parameters in the evaluation of seismic performance of rockfill dams is shear-wave velocity of rock debris and clay core. Reliable evaluation of shear-wave velocity by surface-wave methods requires overcoming the problems of rock-debris discontinuity, material inhomogeneity and sloping boundary. In this paper, for the shear-wave velocity investigation of rockfill dams, SBF (Short-Array Beamforming) technique was proposed using the principles of conventional beamforming technique and adopted to solve limitations of the conventional surface-wave techniques. SBF technique utilizes a 3- to 9-m long measurement array and a far-field source, which allowed the technique to eliminate problems of near-field effects and investigate local anomalies. This paper describes the procedure to investigate shear-wave velocity profile of rockfill dams by SBF technique and IRF (Impulse-response filtration) technique with accuracy and reliability. Validity of the proposed SBF technique was verified by comparisons with downhole tests and CapSASW (Common-Array-Profiling Spectral-Analysis-of-Surface-Waves) tests at a railroad embankment compacted with rock debris.

On Stability of the Pulsed Plasma Thruster for STSAT-2 based on the Lyapunov Function (리아프노프 함수에 기초한 과학기술위성 2호 펄스형 플라즈마 전기추력기의 동작 안정성 연구)

  • Sin, Gu-Hwan;Nam, Myeong-Yong;Gang, Gyeong-In;Im, Jong-Tae;Cha, Won-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.95-102
    • /
    • 2006
  • The PPT being currently developed for the flight model represents a significant leap in techniques and technology compared to the previous flight ones. The electrical energy to be charged in the pulsed plasma thruster (PPT) is a very important aspect to provide an uniform impulse bit ,, and a specific impulse ,, for satellite attitude control. In this paper, we propose a nonlinear control technique and a stability analysis based on the Lyapunov function for the pulsed plasma thruster. Specifically, the proposed control law guarantees to charge and discharge the electrical energy generated from the power processing unit (PPU) within the specified time.

Effective Installations Technique of Grounding Conductors for Metal Oxide Surge Arrestors (배전피뢰기용 접지도선의 효과적인 설치기법)

  • Lee, Bok-Hui;Gang, Seong-Man;Yu, In-Seon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.253-259
    • /
    • 2002
  • This paper deals with the effects of grounding conductors for metal oxide surge arresters. When surge arresters are improperly installed, the results can cause costly damage of electrical equipments. In particular, the route of surge arrester connection is very important because bends and links of leads increase the impedances to lightning surges and tend to nullify the effectiveness of a grounding conductor. Therefore, there is a need to know how effective installation of lightning surge arresters is made in order to control voltage and to absorb energy at high lightning currents. The effectiveness of a grounding conductor and 18 [㎸] metal oxide distribution line arresters was experimentally investigated under the lightning and oscillatory impulse voltages. Thus, the results are as follows; (1) The induced voltage of a grounding conductor is drastically not affected by length of a connecting line, but it is very sensitive to types of grounding conductor. (2) The coaxial cable having a low characteristic impedance is suitable as a grounding conductor. (3) It is also clear from these results that bonding the metal raceway enclosing the grounding conductor to the grounding electrode is very effective because of skin effect. (4) The induced voltages of grounding conductors for the oscillatory impulse voltages are approximately twice as large as those for the lightning impulse voltages.

Study on signal processing techniques for low power and low complexity IR-UWB communication system using high speed digital sampler (고속 디지털 샘플러 기술을 이용한 저전력, 저복잡도의 초광대역 임펄스 무선 통신시스템 신호처리부 연구)

  • Lee, Soon-Woo;Park, Young-Jin;Kim, Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.9-15
    • /
    • 2006
  • In this paper, signal processing techniques for noncoherent impulse-radio-based UWB (IR-UWB) communication system are proposed to provide system implementation of low power consumption and low complexity. The proposed system adopts a simple modulation technique of OOK (on-oft-keying) and noncoherent signal detection based on signal amplitude. In particular, a technique of a novel high speed digital sampler using a stable, lower reference clock is developed to detect nano-second pulses and recover digital signals from the pulses. Also, a 32 bits Turyn code for data frame synchronization and a convolution code as FEC are applied, respectively. To verify the proposed signal processing techniques for low power, low complexity noncoherent IR-UWB system, the proposed signal processing technique is implemented in FPGA and then a short-range communication system for wireless transmission of high quality MP3 data is designed and tested.