• Title/Summary/Keyword: Impulse Strength

Search Result 103, Processing Time 0.019 seconds

Magnetic Field Measuring System by using Loop-type Sensor (루우프형 센서를 이용한 자장측정계)

  • Lee, Bok-Hee;Kil, Gyung-Suk;Park, Dong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.14-21
    • /
    • 1995
  • This paper deals with the active magnetic field measuring system which can measure the time-varying magnetic fields generated by power installations and lightning discharges. The magnetic field measuring system consists of the loop-type magnetic field sensor and the active integrator operated by a differential amplifier. The theoretical principle and design rule of the time-varying magnetic field measuring device and the calibration apparatus are introduced. From the calibration experiments, the frequency bandwidth of the full measuring system ranges from 270 Hz to about 2.3 MHz and the response sensitivity for magentic field strength is 128 $mV/{\mu}T$, respectively, and the calculated B-field values in the center of the loop-type sensor versus the the applied current made with a region of ${\pm}3\;%$error. The actual survey experiments by using lightning impulse current and oscillating impulse current were performed, the results of comparision between the input current waveforms and the magnetic field waveforms are a good agreement with each others and their deviations are less than 0.5 %.

  • PDF

The Characteristics of Obstacle Gaits in Female Elders after 12 Weeks of an Aquatic Exercise Program (12주간의 수중 운동을 수행 한 여성노인의 장애물 보행 특성)

  • Kim, Suk-Bum;Yu, Yeon-Joo
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.539-547
    • /
    • 2009
  • The purpose of this study was to investigate the changes of kinetic and kinematic parameters in obstacle gaits after 12 weeks of an aquatic exercise program. Eight female elders walked in four different heights of obstacles(0, 2.5, 5.1, & 15.2cm) on their self-selected speed. The ROM of hip was significantly increased after the aquatic exercise program. Swing and Stance duration were decreased. The step length was significantly increased and the step width was decreased. After the exercise program the clearance between the right foot and the top of obstacle(except 15.2cm) increased and the crossing speed was increased. The braking force, propulsive force, braking impulse, and propulsive impulse were significantly changed after the aquatic exercise program. The 12 weeks of the aquatic exercise program resulted in lower body strength and balance gains in female elders. The improvements were associated with changes in kinetic and kinematic parameters leading to an obstacle-crossing speed and a safer lower-limb control. The aquatic exercise program is suggested as an effective intervention to promote gait ability and prevent fall-related to the injuries.

Dynamic Structural Response Characteristics of Stiffened Blast Wall under Explosion Loads (폭발 하중을 받는 보강된 방폭벽의 동적 구조 응답 특성에 관한 연구)

  • Kim, Sang Jin;Sohn, Jung Min;Lee, Jong Chan;Li, Chun Bao;Seong, Dong Jin;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.380-387
    • /
    • 2014
  • Piper Alpha disaster drew attention to the damage likely to arise from explosions and fires on an offshore platform. And great concerns have been increased to prevent these hazards. Blast wall is one of the passive safety systems; it plays a key part of minimizing the consequences. However, a buckling due to explosion loads is a factor which can reduce the strength of blast wall. The buckling often occurs between web and flange at the center of blast wall. This study aims to find a solution for reinforcing its strength by installing a flat plate at the spot where the buckling occurs. First of all, ANSYS finite element method is adopted to numerically compute the structural resistance characteristic of blast wall by using a quasi-static approach. Sequentially, the impact response characteristics of blast wall are investigated the effect on thickness of flat plate by using ANSYS/LS-DYNA. Finally, pressure-impulse diagrams (P-I diagram) are presented to permit easy assessment of structural response characteristics of stiffened blast wall. In this study, effective use is made to increase structural intensity. of blast wall and acquired important insights have been documented.

A Study on the Effects of Strengths Perspective Group Art Therapy on Stress, Depression, and Impulsivity of Middle School Male Smoking (강점 관점 집단미술치료가 흡연 남자 중학생의 스트레스, 우울 및 충동성에 미치는 영향)

  • Kim, Jeong-hui;Kim, Min-kyeong
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.337-347
    • /
    • 2020
  • The purpose of this study was to investigate the effects of strengths perspective group art therapy on the strength-related perspectives on the stress, depression and impulsivity of male middle school students who smoke. Data were collected from 15 middle school smokers from two middle schools in A city. Among them, 8 experimental groups and 7 other control groups were willing to participate in art therapy. The collected data were analyzed by nonparametric test considering the number of groups was 15. The Mann-Whitney U test and Wilcoxon signed ranks test were performed. As a result, the strength-focused group art therapy program showed stress (z = -2.521, p <.05), depression (z = -2.527, p <.05), impulse (z = -2.371, p < .05). Therefore, it can be found that strengths perspective group art therapy has a positive effect on the psychological well-being of smoking middle school students, and furthermore, it is necessary to study the deep emotional state of smoking middle school students.

Influence of Defects on Electrical Characteristics of Distributing Cable Termination (배전급 케이블 종단부의 결점이 전기적 특성에 미치는 영향)

  • Kim, Sang-Hyun;Choi, Jae-Hyeong;Choi, Jin-Wook;Kim, Young-Seok;Kim, Sun-Gu;Baek, Seung-Myeong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.190-195
    • /
    • 2009
  • This paper introduces experimental investigates of an electrical accident of the distributing cable termination with simulated a shoddy construction. We prepared two termination kites, one is built-in type, the other is heat contraction type. Also, we manufactured cable termination that have simulated defect by badness construction and investigated their insulation characteristics such as ac (35[kV], 1[min]) and impulse (95[kV], $1.2{\times}50[{\mu}s]$) withstand test. The influence of defects such as thickness decrease, the gap between stress-con of housing and semiconductor and heating time on insulating properties of the termination have been studied. The thickness decrease of an insulator decreases ac breakdown strength suddenly and the breakdown traces of the insulator that is damaged by knife displayed elliptic shape. The gap of between stress-con and semiconductor deteriorates dielectric strength of insulator seriously. In heat contraction type, the ac breakdown voltage became low when the heating time is short.

Thrust Performance and Plasma Acceleration Process of Hall Thrusters

  • Tahara, Hirokazu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.262-270
    • /
    • 2004
  • Basic experiments were carried out using the THT-IV low-power Hall thruster to examine the influences of magnetic field shape and strength, and acceleration channel length on thruster performance and to establish guidelines for design of high-performance Hall thrusters. Thrusts were measured with varying magnetic field and channel structure. Exhaust plasma diagnostic measurement was also made to evaluate plume divergent angles and voltage utilization efficiencies. Ion current spatial profiles were measured with a Faraday cup, and ion energy distribution functions were estimated from data with a retarding potential analyzer. The thruster was stably operated with a highest performance under an optimum acceleration channel length of 20 mm and an optimum magnetic field with a maximum strength of about 150 Gauss near the channel exit and with some shape considering ion acceleration directions. Accordingly, an optimum magnetic field and channel structure is considered to exist under an operational condition, related to inner physical phenomena of plasma production, ion acceleration and exhaust plasma feature. A new Hall thruster was designed with basic research data of the THT-IV thruster. With the thruster with many considerations, long stable operations were achieved. In all experiments at 200-400 V with 1.5-3 mg/s, the thrust and the specific impulse ranged from 15 to 70 mN and from 1100 to 2300 see, respectively, in a low electric power range of 300~1300 W. The thrust efficiency reached 55 %. Hence, a large map of the thruster performance was successfully made. The thermal characteristics were also examined with data of both measured and calculated temperatures in the thruster body. Thermally safe conditions were achieved with all input powers.

  • PDF

Review of the Solid Propulsion Trend in the Launch Vehicle(1) (발사체 고체 추진기관 동향 리뷰(1))

  • Lee, Tae-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.97-107
    • /
    • 2012
  • In general, solid propulsion offers cost effective, large thrust capabilities comparing to the liquid propulsion which offers high specific impulse and restart capabilities. Therefore, solid propulsion is well fitted for the first stage and boosters. Building Block Launcher(BBL) approach has been studied for the launch vehicle because of cost effectiveness, limited development time and low risk. Using of the carbon fiber epoxy resin in the solid rocket motor case is expanded, and specially high strength fibers are more attracted since its inert mass reduction.

Monetary Policy Transmission during Multiple Indicator Regime: A Case of India

  • SETHI, Madhvi;BABY, Saina;DAR, Vandita
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.3
    • /
    • pp.103-113
    • /
    • 2019
  • The effectiveness of monetary policy critically depends upon how well the transmission mechanism functions, so that the desired impact on output and inflation is achieved. The purpose of this paper is to study the transmission mechanism of monetary policy by analyzing the impact on inflation and output during multiple indicator regime (1998-99 to 2014) in an emerging economy-India. The Inflation Targeting Regime is also briefly outlined alongwith the impact on output and inflation. Using quarterly data for the period 1997 to 2017, the paper uses weighted average call money market rate as a proxy for the policy rate and evaluates the strength of the interest rate channel. We use a conventional Structural vector auto regression (SVAR) methodology to evaluate the efficacy and show the impluse response functions. Our results find that changes in the policy rate impact output growth steeply with a lag of about two quarters and the impact on inflation is maximized after three quarters. The study concludes that the monetary policy in India has a significant impact on output and inflation in the short-to-medium-run. After the policy shock, the fall in the output growth rate is of greater magnitude than the fall in inflation.

A Study on the Determination of Fracture Parameters for Rubber Toughened Polymeric Materials Using on Instrumented Charpy Impact Test (계장화 샤르피충격시험기를 이용한 고무보강 폴리머재료의 파괴인자 결정에 관한연구)

  • Park, Myeong-Gyun;Choe, Yeong-Sik;Park, Se-Man;Yang, Jin-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1520-1526
    • /
    • 2002
  • The Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical dynamic strain energy release rates(G$\_$c/) from the Charpy impact energy measurements. An instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture energies and maximum critical loads. The dynamic stress intensity factor Kid was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

Effect of Ultrasonic Vibration on the Friction and Wear Characteristics of Aluminum Alloy (초음파 진동이 알루미늄 합금의 마찰 마모 특성에 미치는 영향)

  • Park, Jae-Nam;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.132-137
    • /
    • 2018
  • Ultrasonic waves are used in various applications in multiple devices, sensors, and high-power machinery, such as processing machines, welders, and cleaners, because the acoustic vibration frequencies are above the human audible frequency range. In ultrasonic machining, electrical energy at a high frequency of 20 kHz or more is converted into mechanical vibration by a vibrator and an amplifier. This technique allows instantaneous separation between a tool and a workpiece during machining, machining by pulse impulse force at the time of re-contact and minimizes the minute elastic deformations of the workpiece and machine tools due to the cutting effect. The Al7075 alloy used in this study is a typical aluminum alloy with superior strength that is mainly used in aircrafts, automobiles, and sporting goods. To investigate the optimal conditions for machining aluminum alloy using ultrasonic vibration, the present experiment utilized the Taguchi orthogonal array method, and the coefficient of friction was analyzed using the characteristics of the Taguchi technique. In ultrasonic friction and abrasion tests, the changes in the friction coefficient were measured in the absence of ultrasonic vibrations and at 28 kHz and 40 kHz. As a result, the most considerable influence on the friction coefficient was found to be the normal load, and the frequency of ultrasonic vibrations increases, the coefficient of friction increases. It was thus confirmed that the amount of wear increases when ultrasonic vibration is applied.