KIPS Transactions on Computer and Communication Systems
/
v.4
no.3
/
pp.85-90
/
2015
In this paper, anew parallel event-driven logic simulation is proposed. As the proposed prediction-based parallel event-driven simulation method uses both prediction data and actual data for the input and output values of local simulations executed in parallel, the synchronization overhead and the communication overhead, the major bottleneck of the performance improvement, are greatly reduced. Through the experimentation with multiple designs, we have observed the effectiveness of the proposed approach.
High-reliability prediction of dam inflow is necessary for efficient dam operation. Recently, studies were conducted to predict the inflow of dams using Multi Layer Perceptron (MLP). Existing studies used the Gradient Descent (GD)-based optimizer as the optimizer among MLP operators to find the optimal correlation between data. However, the GD-based optimizers have disadvantages in that the prediction performance is deteriorated due to the possibility of convergence to the local optimal value and the absence of storage space. This study improved the shortcomings of the GD-based optimizer by developing Adaptive moments combined with Improved Harmony Search (AdamIHS), which combines Adaptive moments among GD-based optimizers and Improved Harmony Search (IHS). In order to evaluate the learning and prediction performance of MLP using AdamIHS, Daecheong Dam inflow was learned and predicted and compared with the learning and prediction performance of MLP using GD-based optimizer. Comparing the learning results, the Mean Squared Error (MSE) of MLP, which is 5 hidden layers using AdamIHS, was the lowest at 11,577. Comparing the prediction results, the average MSE of MLP, which is one hidden layer using AdamIHS, was the lowest at 413,262. Using AdamIHS developed in this study, it will be possible to show improved prediction performance in various fields.
Journal of Information Technology Applications and Management
/
v.21
no.4
/
pp.203-223
/
2014
This study proposes a novel context-aware recommender system, which is designed to recommend the items according to the customer's responses to the previously recommended item. In specific, our proposed system predicts the user's emotional state from his or her responses (such as facial expressions and movements) to the previous recommended item, and then it recommends the items that are similar to the previous one when his or her emotional state is estimated as positive. If the customer's emotional state on the previously recommended item is regarded as negative, the system recommends the items that have characteristics opposite to the previous item. Our proposed system consists of two sub modules-(1) emotion prediction module, and (2) responsive recommendation module. Emotion prediction module contains the emotion prediction model that predicts a customer's arousal level-a physiological and psychological state of being awake or reactive to stimuli-using the customer's reaction data including facial expressions and body movements, which can be measured using Microsoft's Kinect Sensor. Responsive recommendation module generates a recommendation list by using the results from the first module-emotion prediction module. If a customer shows a high level of arousal on the previously recommended item, the module recommends the items that are most similar to the previous item. Otherwise, it recommends the items that are most dissimilar to the previous one. In order to validate the performance and usefulness of the proposed recommender system, we conducted empirical validation. In total, 30 undergraduate students participated in the experiment. We used 100 trailers of Korean movies that had been released from 2009 to 2012 as the items for recommendation. For the experiment, we manually constructed Korean movie trailer DB which contains the fields such as release date, genre, director, writer, and actors. In order to check if the recommendation using customers' responses outperforms the recommendation using their demographic information, we compared them. The performance of the recommendation was measured using two metrics-satisfaction and arousal levels. Experimental results showed that the recommendation using customers' responses (i.e. our proposed system) outperformed the recommendation using their demographic information with statistical significance.
Spatial prediction methods have been useful to determine the variability of water quality in space and time due to difficulties in collecting spatial data across extensive spaces such as watershed. This study compares two kriging methods in predicting BOD concentration on the unmonitored sites in the Geum River Watershed and to assess its predictive performance by leave-one-out cross validation. This study has shown that cokriging method can make better predictions of BOD concentration than ordinary kriging method across the Geum River Watershed. Challenges for the application of cokriging on the spatial prediction of surface water quality involve the comparison of network-distance-based relationship and euclidean-distance-based relationship for the improvement in the predictive performance.
Journal of the Korean Institute of Telematics and Electronics
/
v.27
no.4
/
pp.491-501
/
1990
Recently, four speech coding techniques, namely, SBC-APCM(sub-band coding adaptive PCM), RPE-LPC(regualr pulse excitation linear predictive codec), MPE-LTP(multi-pulse excited long-term prediction) and CELP (code-excited linear prediction) are proposed for digital mobile radio applications. However, a performance comparison of these coders in the Rayleigh fading environment has not been made yet. In this paper, the performances of the four spech coders in the random bit error and burst error environment are investigated. For the channel coding of SBC-APCM, RPE-LPC and MPE-LTP, the sensitivity of output bit stream is measured and a bit selective forward error correction is provided acording to the measured bit sensitivity. And for an attempt to improve the performance of CELP, an optimum quantizer is applied for transmitting scalar quantities in CELP. However, an improvement over the conventional approach is found to be negligible. For the channel coding of CELP, Reed-Solomon code, Golay code, convolutional code of rate 1/2 shows the best performance. Finally, from the simulation results, it is concluded that CELP is the best candidate for digital mobile radio and is followed by MPE-LTP, SBC-APCM and RPE-LPC.
Numerical experiments were carried out to investigate the effect of data assimilation of observational data on weather and PM (particulate matter) prediction. Observational data applied to numerical experiment are aircraft observation, satellite observation, upper level observation, and AWS (automatic weather system) data. In the case of grid nudging, the prediction performance of the meteorological field is largely improved compared with the case without data assimilations because the overall pressure distribution can be changed. So grid nudging effect can be significant when synoptic weather pattern strongly affects Korean Peninsula. Predictability of meteorological factors can be expected to improve through a number of observational data assimilation, but data assimilation by single data often occurred to be less predictive than without data assimilation. Variation of air pressure due to observation nudging with high prediction efficiency can improve prediction accuracy of whole model domain. However, in areas with complex terrain such as the eastern part of the Korean peninsula, the improvement due to grid nudging were only limited. In such cases, it would be more effective to aggregate assimilated data.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.10
/
pp.2562-2570
/
2014
One of the important hints for inferring the function of unknown proteins is the knowledge about protein subcellular localization. Recently, there are considerable researches on the prediction of subcellular localization of proteins which simultaneously exist at multiple subcellular localization. In this paper, label power-set classification is improved for the accurate prediction of multiple subcellular localization. The predicted multi-labels from the label power-set classifier are combined with their prediction probability to give the final result. To find the accurate probability estimates of multi-classes, this paper employs pair-wise comparison and error-correcting output codes frameworks. Prediction experiments on protein subcellular localization show significant performance improvement.
The Journal of Korean Institute of Communications and Information Sciences
/
v.21
no.1
/
pp.33-46
/
1996
Inthis paper, we investigate the compatible coding technique, which receives much interest ever since the introduction of HDTV. First, attempts have been made to analyze the theoretical transform coding gains for various hierarchical decomposition techniques, namely subband, pyramid and DCT-based decomposition techniques. It is shown that the spatical domain techniques proide higher transform coding gains than the DCT-based coding technique. Secondly, we compare the performance of these spatial domain techniques, in terms of the PSNR versus various rate allocations to each layer. Based on these analyses, it is believed that the pyramid decomposition is more appropriate for the compatible coding. Also in this paper, we propose a hybrid prediction pyramid coding technique, by combining the spatio-temporal prediction in MPEG-2[3] and the adaptive MC(Motion Compensation)[1]. In the proposed coding technigue, we also employ an adaptive DCT coefficient scanning technique to exploit the direction information of the 2nd-layer signal. Through computer simulations, the proposed hybrid prediction with adaptive scanning technuque shows the PSNR improvement, by about 0.46-1.78dB at low 1st-layer rate(about 0.1bpp) over the adaptive MC[1], and by about 0.33-0.63dB at high 1st-layer rate (about 0.32-0.43bpp) over the spatio-temporal prediction[3].
Journal of Institute of Control, Robotics and Systems
/
v.7
no.12
/
pp.967-972
/
2001
In this paper, an adaptive robust nonlinear predictive controller is developed for the continuous time nonlinear systems whose control objective is composed of the system output and its desired value. The basic control law is derived from the continuous time prediction model and its feedback dynamcis shows another from if input and output linearization. In order to cope with the parameter uncertainty, robust control is incorporated into the basic control law and the asymptotic convergence of tracking error to a certain bounded region is guaranteed. For stability and performance improvement within the bounded region, an adaptive control is introduced. Simulation tests for the motion control of an underwater wall-ranging robot confirm the performance improvement and the robustness of this controller.
Seungsik Kim;Nami Gu;Jeongin Moon;Keunwook Kim;Yeongeun Hwang;Kyeongjun Lee
Communications for Statistical Applications and Methods
/
v.30
no.5
/
pp.485-499
/
2023
This study aimed to predict the number of meals served in a group cafeteria using machine learning methodology. Features of the menu were created through the Word2Vec methodology and clustering, and a stacking ensemble model was constructed using Random Forest, Gradient Boosting, and CatBoost as sub-models. Results showed that CatBoost had the best performance with the ensemble model showing an 8% improvement in performance. The study also found that the date variable had the greatest influence on the number of diners in a cafeteria, followed by menu characteristics and other variables. The implications of the study include the potential for machine learning methodology to improve predictive performance and reduce food waste, as well as the removal of subjective elements in menu classification. Limitations of the research include limited data cases and a weak model structure when new menus or foreign words are not included in the learning data. Future studies should aim to address these limitations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.