• Title/Summary/Keyword: Improvement of prediction performance

Search Result 440, Processing Time 0.081 seconds

Prediction of Transmembrane Protein Topology Using Position-specific Modeling of Context-dependent Structural Regions

  • Chi, Sang-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.683-693
    • /
    • 2005
  • This paper presents a new transmembrane Protein topology prediction method which is an attempt to model the topological rules governing the topogenesis of transmembrane proteins. Context-dependent structural regions of the transmembrane protein are used as basic modeling units in order to effectively represent their topogenic roles during transmembrane protein assembly. These modeling units are modeled by means of a tied-state hidden Markov model, which can express the position-specific effect of amino acids during ransmembrane protein assembly. The performance of prediction improves with these modeling approaches. In particular, marked improvement of orientation prediction shows the validity of the proposed modeling. The proposed method is available at http://bioroutine.com/TRAPTOP.

  • PDF

The Study of Video Transcoding and Streaming System Based on Prediction Period

  • Park, Seong-Ho;Kim, Sung-Min;Lee, Hwa-Sei
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.339-345
    • /
    • 2007
  • Video transcoding is a technique used to convert a compressed input video stream with an arbitrary format, size, and bitrate into a different attribute video stream different attributes to provide a efficient video streaming service for the customers is dispersed in the heterogeneous networks. Specifically, frames deletion occur in a transcoding scheme that exploits the adjustment of frame rate, and at this time, the loss in temporal relation among frames due to frame deletion is compensated for the prediction of motion estimation by reusing motion vectors in the would-be deleted frames. But the processing time for transcoding don't have an improvement as much as our expectation because transcoding is done only within the transcoder. So in this paper, we propose a new transcoding algorithm based on prediction period to improve transcoding-related processing time. For this, we also modify the existing encoder so as to adjust dynamically frame rate based on the prediction period and deletion period of frames. To check how the proposed algorithm works nicely, we implement a video streaming system with the new transcoder and encoder to which it is applied. The result of the performance test shows that the streaming system with proposed algorithm improve 60% above in processing time and also PSNR have a good performance while the quality of pictures is preserved.

Genome Scale Protein Secondary Structure Prediction Using a Data Distribution on a Grid Computing

  • Cho, Min-Kyu;Lee, Soojin;Jung, Jin-Won;Kim, Jai-Hoon;Lee, Weontae
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.65-65
    • /
    • 2003
  • After many genome projects, algorithms and software to process explosively growing biological information have been developed. To process huge amount of biological information, high performance computing equipments are essential. If we use the remote resources such as computing power, storages etc., through a Grid to share the resources in the Internet environment, we will be able to obtain great efficiency to process data at a low cost. Here we present the performance improvement of the protein secondary structure prediction (PSIPred) by using the Grid platform, distributing protein sequence data on the Grid where each computer node analyzes its own part of protein sequence data to speed up the structure prediction. On the Grid, genome scale secondary structure prediction for Mycoplasma genitalium, Escherichia coli, Helicobacter pylori, Saccharomyces cerevisiae and Caenorhabditis slogans were performed and analyzed by a statistical way to show the protein structural deviation and comparison between the genomes. Experimental results show that the Grid is a viable platform to speed up the protein structure prediction and from the predicted structures.

  • PDF

Competition Analysis to Improve the Performance of Movie Box-Office Prediction (영화 매출 예측 성능 향상을 위한 경쟁 분석)

  • He, Guijia;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.9
    • /
    • pp.437-444
    • /
    • 2017
  • Although many studies tried to predict movie revenues in the last decade, the main focus is still to learn an efficient forecast model to fit the box-office revenues. However, the previous works lack the analysis about why the prediction errors occur, and no method is proposed to reduce the errors. In this paper, we consider the prediction error comes from the competition between the movies that are released in the same period. Our purpose is to analyze the competition value for a movie and to predict how much it will be affected by other competitors so as to improve the performance of movie box-office prediction. In order to predict the competition value, firstly, we classify its sign (positive/negative) and compute the probability of positive sign and the probability of negative sign. Secondly, we forecast the competition value by regression under the condition that its sign is positive and negative respectively. And finally, we calculate the expectation of competition value based on the probabilities and values. With the predicted competition, we can adjust the primal predicted box-office. Our experimental results show that predictive competition can help improve the performance of the forecast.

Performance and Power Consumption Improvement of Embedded RISC Core (임베디드 RISC 코어의 성능 및 전력 개선)

  • Jung, Hong-Kyun;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.453-461
    • /
    • 2010
  • This paper presents a branch prediction algorithm and a 4-way set-associative cache for performance improvement of embedded RISC core and a clock-gating algorithm using ODC (Observability Don't Care) operation to improve the power consumption of the core. The branch prediction algorithm has a structure using BTB(Branch Target Buffer) and 4-way set associative cache has lower miss rate than direct-mapped cache. Pseudo-LRU Policy, which is one of the Line Replacement Policies, is used for decreasing the number of bits that store LRU value. The clock gating algorithm reduces dynamic power consumption. As a result of estimation of performance and dynamic power, the performance of the OpenRISC core applied the proposed architecture is improved about 29% and dynamic power of the core using Chartered $0.18{\mu}m$ technology library is reduced by 16%.

Improvement of early prediction performance of under-performing students using anomaly data (이상 데이터를 활용한 성과부진학생의 조기예측성능 향상)

  • Hwang, Chul-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1608-1614
    • /
    • 2022
  • As competition between universities intensifies due to the recent decrease in the number of students, it is recognized as an essential task of universities to predict students who are underperforming at an early stage and to make various efforts to prevent dropouts. For this, a high-performance model that accurately predicts student performance is essential. This paper proposes a method to improve prediction performance by removing or amplifying abnormal data in a classification prediction model for identifying underperforming students. Existing anomaly data processing methods have mainly focused on deleting or ignoring data, but this paper presents a criterion to distinguish noise from change indicators, and contributes to improving the performance of predictive models by deleting or amplifying data. In an experiment using open learning performance data for verification of the proposed method, we found a number of cases in which the proposed method can improve classification performance compared to the existing method.

Improving prediction performance of network traffic using dense sampling technique (밀집 샘플링 기법을 이용한 네트워크 트래픽 예측 성능 향상)

  • Jin-Seon Lee;Il-Seok Oh
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.24-34
    • /
    • 2024
  • If the future can be predicted from network traffic data, which is a time series, it can achieve effects such as efficient resource allocation, prevention of malicious attacks, and energy saving. Many models based on statistical and deep learning techniques have been proposed, and most of these studies have focused on improving model structures and learning algorithms. Another approach to improving the prediction performance of the model is to obtain a good-quality data. With the aim of obtaining a good-quality data, this paper applies a dense sampling technique that augments time series data to the application of network traffic prediction and analyzes the performance improvement. As a dataset, UNSW-NB15, which is widely used for network traffic analysis, is used. Performance is analyzed using RMSE, MAE, and MAPE. To increase the objectivity of performance measurement, experiment is performed independently 10 times and the performance of existing sparse sampling and dense sampling is compared as a box plot. As a result of comparing the performance by changing the window size and the horizon factor, dense sampling consistently showed a better performance.

Nonlinear model predictive control of chemical reactors

  • Lee, Jongku;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.419-424
    • /
    • 1992
  • A robust nonlinear predictive control strategy using a disturbance estimator is presented. The disturbance estimator is comprised of two parts: one is the disturbance model parameter adaptation and the other is future disturbance prediction. RLSM(recurrsive least square method) with a forgetting factor is used to de the uncertain distance model parameters and for the future disturbance prediction, future process outputs and inputs projected by the process model are used. The simulation results for chemical reactors indicate that a substantial improvement in nonlinear predictive control performance is possible using the disturbance estimator.

  • PDF

Effect of Correcting Radiometric Inconsistency between Input Images on Spatio-temporal Fusion of Multi-sensor High-resolution Satellite Images (입력 영상의 방사학적 불일치 보정이 다중 센서 고해상도 위성영상의 시공간 융합에 미치는 영향)

  • Park, Soyeon;Na, Sang-il;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.999-1011
    • /
    • 2021
  • In spatio-temporal fusion aiming at predicting images with both high spatial and temporal resolutionsfrom multi-sensor images, the radiometric inconsistency between input multi-sensor images may affect prediction performance. This study investigates the effect of radiometric correction, which compensate different spectral responses of multi-sensor satellite images, on the spatio-temporal fusion results. The effect of relative radiometric correction of input images was quantitatively analyzed through the case studies using Sentinel-2, PlanetScope, and RapidEye images obtained from two croplands. Prediction performance was improved when radiometrically corrected multi-sensor images were used asinput. In particular, the improvement in prediction performance wassubstantial when the correlation between input images was relatively low. Prediction performance could be improved by transforming multi-sensor images with different spectral responses into images with similar spectral responses and high correlation. These results indicate that radiometric correction is required to improve prediction performance in spatio-temporal fusion of multi-sensor satellite images with low correlation.

PROPULSIVE PERFORMANCE PREDICTION OF A DUCTED PROPELLER IN OPEN WATER CONDITION USING CFD (CFD를 이용한 덕트 프로펠러 단독 상태에서의 추진 성능 예측)

  • Lee, K.-U.;Jin, D.-H.;Lee, S.-W.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, a numerical prediction on propulsive performance of a ducted propeller in open water condition was carried out by solving Reynolds averaged Navier-Stokes(RANS) equation using computational fluid dynamics(CFD). A configuration of propeller Ka-470 inside duct 19A was considered. Hexahedral grid system was generated by dividing whole computational domain into three separate regions; propeller, duct and outer flow region. A commercial CFD software, ANSYS-CFX was used for numerical simulations. Results were compared with experimental data and showed considerable improvement in accuracy, in comparison to those from surface panel method which is based on potential flow assumption. The results also exhibited the importance of grid system within the gap between the inner surface of duct and blade tip for accurate prediction of propulsive performance of ducted propeller.