International Journal of Naval Architecture and Ocean Engineering
/
v.7
no.4
/
pp.708-719
/
2015
The two most important tasks of icebreakers are first to secure a sailing route by breaking the thick sea ice and second to sail efficiently herself for purposes of exploration and transportation in the polar seas. The resistance of icebreakers is a priority factor at the preliminary design stage; not only must their sailing efficiency be satisfied, but the design of the propulsion system will be directly affected. Therefore, the performance of icebreakers must be accurately calculated and evaluated through the use of model tests in an ice tank before construction starts. In this paper, a new procedure is developed, based on model tests, to estimate a ship's ice breaking resistance during continuous ice-breaking in ice. Some of the factors associated with crushing failures are systematically considered in order to correctly estimate her ice-breaking resistance. This study is intended to contribute to the improvement of the techniques for ice resistance prediction with ice breaking ships.
H.264/AVC is an authoritative international video coding standard which shows code and efficiency more improved than the existing video standards. Above all, the parameter block mode of H.264/AVC significantly contributes much to high compression efficiency. However, as the occasion demands, users tend to pass while overlooking the part that can produce a little higher compression efficiency. We, taking notice of this point, are designed to bring in much higher compression efficiency by gathering up the overlooked parts. This paper suggests the algorithm that produces efficient performance improvement by using the histogram of luminance in the pixel unit (Macroblock) of respective prediction block and applying specific thresholds. The experimental results proves that the technique proposed by this paper increases the compression efficiency of the existing H.264/AVC algorithm by 0.4% without any increase in the whole encoding time and PSNR complexity.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.20
no.5
/
pp.55-60
/
2021
We applied an artificial neural network (ANN) and evaluated surface roughness prediction in lateral milling using an endmill. The selected workpiece was AL6061-T4 to obtain data of surface roughness measurement based on the spindle speed, feed, and depth of cut. The Bayesian optimization algorithm was applied to the number of nodes and the learning rate of each hidden layer to optimize the neural network. Experimental results show that the neural network applied to optimize using the Expected Improvement(EI) algorithm showed the best performance. Additionally, the predicted values do not exactly match during the neural network evaluation; however, the predicted tendency does march. Moreover, it is found that the neural network can be used to predict the surface roughness in the milling of aluminum alloy.
In this paper, a robust nonlinear prediction-type controller (RNPC) is developed for the continuous time nonlinear system whose control objective is composed of system output and its desired value. The basic control law of RNPC is derived such that the future response of the system is first predicted by appropriate functional expansions and the control law minimizing the difference between the predicted and desired responses is then calculated. RNPC which involves two controls, i.e., the auxiliary and robust controls into the basic control, shows the stable closed loop dynamics of nonlinear system of any relative degree and provides the robustness to the nonlinear system with parameter/modeling uncertainty. Simulation tests for the position control of a two-link rigid body manipulator confirm the performance improvement and the robustness of RNPC.
International Journal of Computer Science & Network Security
/
v.22
no.10
/
pp.11-16
/
2022
Applying predictive analytics to predict software defects has improved the overall quality and decreased maintenance costs. Many supervised and unsupervised learning algorithms have been used for defect prediction on publicly available datasets. Most of these datasets suffer from an imbalance in the output classes. We study the impact of class imbalance in the defect datasets on the efficiency of the defect prediction model and propose a CPP method for handling imbalances in the dataset. The performance of the methods is evaluated using measures like Matthew's Correlation Coefficient (MCC), Recall, and Accuracy measures. The proposed sampling technique shows significant improvement in the efficiency of the classifier in predicting defects.
Journal of Institute of Control, Robotics and Systems
/
v.13
no.4
/
pp.315-319
/
2007
A technique to model plasma processes was presented. This was accomplished by combining the backpropagation neural network (BPNN) and genetic algorithm (GA). Particularly, the GA was used to optimize five training factor effects by balancing the training and test errors. The technique was evaluated with the plasma etch data, characterized by a face-centered Box Wilson experiment. The etch outputs modeled include Al etch rate, AI selectivity, DC bias, and silica profile angle. Scanning electron microscope was used to quantify the etch outputs. For comparison, the etch outputs were modeled in a conventional fashion. GABPNN models demonstrated a considerable improvement of more than 25% for all etch outputs only but he DC bias. About 40% improvements were even achieved for the profile angle and AI etch rate. The improvements demonstrate that the presented technique is effective to improving BPNN prediction performance.
Journal of Korea Artificial Intelligence Association
/
v.1
no.2
/
pp.15-20
/
2023
This study aims to enhance the accuracy of fine dust predictions by analyzing various factors within the local environment, in addition to atmospheric conditions. In the atmospheric environment, meteorological and air pollution data were utilized, and additional factors contributing to fine dust generation within the region, such as traffic volume and electricity transaction data, were sequentially incorporated for analysis. XGBoost, Random Forest, and ANN (Artificial Neural Network) were employed for the analysis. As variables were added, all algorithms demonstrated improved performance. Particularly noteworthy was the Artificial Neural Network, which, when using atmospheric conditions as a variable, resulted in an MAE of 6.25. Upon the addition of traffic volume, the MAE decreased to 5.49, and further inclusion of power transaction data led to a notable improvement, resulting in an MAE of 4.61. This research provides valuable insights for proactive measures against air pollution by predicting future fine dust levels.
Pig breeding programs have been very successful in the improvement of animals by the simple expedient of focusing on a few traits of economic importance, particularly growth efficiency and leanness. Further reductions in leanness may become more difficult to achieve, due to reduced genetic variation, and less desirable, due to adverse correlated effects on meat and eating quality. Best linear unbiased prediction (BLUP) of breeding values makes possible the incorporation of data from many sources and increases the value of including traits such as sow performance in the breeding objective. Advances in technology, such as electronic animal identification, electronic feeders, improved ultrasonic scanners and automated data capture at slaughter houses, increase the number of sources of information that can be included in breeding value predictions. Breeding program structures will evolve to reflect these changes and a common structure is likely to be several or many breeding farms genetically linked by A.i., with data collected on a number of traits from many sources and integrated into a single breeding value prediction using BLUP. Future developments will include the production of a porcine gene map which may make it possible to identify genes controlling economically valuable traits, such as those for litter size in the Meishan, and introgress them into nucleus populations. Genes identified from the gene map or from other sources will provide insight into the genetic basis of performance and may provide the raw material from which transgenic programs will channel additional genetic variance into nucleus populations undergoing selection.
Proceedings of the Korean Society of Machine Tool Engineers Conference
/
2004.10a
/
pp.375-381
/
2004
Recently, the evolution in production techniques (e.g. high-speed milling) and the complex shapes involved in modem production design has been increasingly popular. The key to the achievement is a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. The more complex these tool paths the higher the speed and acceleration requirements. But it is very difficult to reach the target for high speed machine tool because of the limitations of servo system and motion control system. However the direct drive design of machine tool axes, which is based on linear motors and which recently appeared on the market, is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, more mechanical simplicity and very higher acceleration and velocity comparing to the traditional system. This paper focused on the performance tests of the high speed horizontal machine tool based on linear motor. Especially, dynamic characteristics were investigated through circular test and circular form machining test is carried out considering many important parameter. Therefore these several experiments is used to be evaluated the model for prediction of circular motion error and circular machined error.
International Journal of Fluid Machinery and Systems
/
v.1
no.1
/
pp.76-85
/
2008
In order to extract micro hydropower in the very low specific speed range, a Positive Displacement Turbine (PDT) was proposed and steady performance was determined experimentally. However, the suppression of large pressure pulsation is inevitable for practical application of PDT. The objective of the present study is to reveal the mechanism and the characteristics of pressure pulsation in PDT by use of CFD and to suppress the pressure pulsation. Unsteady CFD analysis has revealed that large pressure pulsation is caused by large variation of rotational speed of the following rotor, while the driving rotor, which is output rotor, keeps constant speed. Here is newly proposed a 4-lobe helical type rotor which can reduce the pressure pulsation drastically and the performance prediction of new PDT is determined.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.