• Title/Summary/Keyword: Improvement of Water quality

Search Result 1,146, Processing Time 0.03 seconds

Effects of Branched Dextrin on the Quality Characteristics of Frozen Soft Roll Dough and its Bread during Storage (분지 덱스트린 첨가가 냉동 소프트롤 반죽 및 빵의 저장 중 품질 특성에 미치는 영향)

  • Park, Jin-Hee;Lim, Chun-Son;Kim, Il-Hwan;Kim, Mun-Yong
    • Korean journal of food and cookery science
    • /
    • v.27 no.5
    • /
    • pp.507-522
    • /
    • 2011
  • In this study, samples of wheat flour and dough were prepared by adding of 1, 3, or 5% branched dextrin, which is produced from the amylopectin of waxy corn starch using a cyclization reaction with a branching enzyme. The samples were then evaluated qualitatively in terms of farinogram, viscogram, and extensogram characteristics. The fermentation power of dough expansion, extensogram characteristics, specific volume, baking loss, external/internal surface appearance, and sensory qualities were also examined after 4 weeks of storage at -20$^{\circ}C$ to determine the effect on freeze-thaw stability and quality improvement of branched dextrins in the soft roll bread formulation. Furthermore, the samples along with a control were compared regarding their quality characteristics, including changes in moisture content, water activity, color, and textural characteristics during a storage period of 4 days at 20$^{\circ}C$ to determine the effect on preventing retrogradation of the branched dextrin. As the branched dextrin content increased, area and extensibility increased, whereas water absorption, fermentation power of dough expansion, resistance/extensibility ratio, baking loss, and brownness of the crust decreased. However, the control group presented significantly higher peak viscosity, resistance, specific volume, taste, overall acceptability, moisture content, water activity, springiness, cohesiveness, and resilience values than those of the branched dextrin samples, whereas lightness, hardness, and chewiness showed the reverse effect. As the storage period increased, lightness, hardness, and chewiness increased, whereas cohesiveness decreased. In conclusion, the results indicate that adding 1~3% branched dextrin into a soft roll bread formulation from frozen dough had no positive effect on freeze-thaw stability or preventing retrogradation but may provide good nutritional properties.

Equipment Improvement for Field Application of Very-Early-Strength Latex-Modified Concrete (초속경라텍스개질 콘크리트 현장적용을 위한 장비개선)

  • Choi Sung Yong;Kim Ki Heun;Park Won Il;Yun Kyong Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.769-772
    • /
    • 2004
  • Very-Early-Strength Latex-Modified Concrete(VESLMC) provides the repairing material with short curing time as well as excellent bond strength, flexural strength and impermeability against water and chloride. In 2001, VESLMC introduced in Korea and improved superior material through research and development on material properties and durability. In 2003, the field test progressed for study problems of VESLMC field application. This paper introduced equipment improvement for bridge deck repair save both repair time and labor, while producing quality VESLMC structures.

  • PDF

Remediation of Water Quality Using Up-Flow Circulation Apparatus(UFCA) in a Reservoir (용승순환장치를 이용한 호소의 수질개선에 관한 연구)

  • Kang, Chang-Min;Chung, Seon-Yong
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.255-260
    • /
    • 2008
  • This study was conducted to analyse the effects of the UFCA for treating polluted water in a reservoir. The UFCA mixes water by circulation of surface and bottom water layers. The circulation supplies oxygen to bottom of the reservoir, resulting in water quality improvement. With a UFCA in use, we surveyed the changes of temperature, pH, transparency, depth, conductivity, DO, COD, BOD, T-N, T-P and Chlorophyll-a for 7 months from Feb. to Aug. in 2004 in our experimental reservoir. There was little difference in the surface and bottom temperatures of the reservoir because of water mixing by the UFCA. However, pH was changed from 7 to 9. The transparency of water was about 80 cm through the all periods. Conductivity was $150\;{\mu}S/cm$ in early Feb., but increased to $270\;{\mu}S/cm$ in early March. Little change was seen in DO with depth, but it was maintained above 6 mg/l in June and July. BOD increased from 2.1 to 12.2 mg/l. The study reservoir did not undergo any eutrophication during the period of our experiment, but the comparison reservoir had an algae-bloom. The COD in the experimental reservoir increased from 5.4 to 14.5 mg/l. The COD concentration of the experimental reservoir was higher than comparison reservoir at the beginning of the study but in August this situation was reversed. SS concentration increased from 13.5 to 23.5 mg/l in Feb., but it fell from between 8.5 to 11.2 mg/l in July. T-N was increased from 1.3 to 4.9 mg/l. It increased up to 3 times in the rainy season as compared to other components. However the comparison reservoir increased up to 40 times higher than the experimental reservoir in the same period. T-P increased from 0.04 to 0.17 mg/l. The ratio of T-N to T-P increased from 20:1 to 40:1 which means that T-P was a growth limiting factor for algae and aquatic plants. Chlorophyll-a increased from 20 to 120 mg/l, and its concentration was correlated with T-P, such that Chlorophyl-a concentration increased with increased of T-P concentration. The concentrations of COD, T-N, T-P and other parameters were higher in the experimental reservoir than in the comparison reservoir but this situation was reversed in July, when the most severe eutophication occurred. The results show that overall the experimental reservoir was greatly remedied by UFCA. The UFCA accelerated the degradation of aquatic organic materials through effective supply of air with up-flow and circulation of water. We conclude that the UFCA can be very effective in aspect of the remediation of water quality incontaminated reservoirs and lakes.

Use of East Deep Sea Water for the Increase of Functional Components of Ginseng (Panax ginseng C.A. Meyer) and Tomato (Lycopersicon eculentum L.) (인삼과 토마토의 기능성 성분 증진을 위한 동해 해양심층수의 이용)

  • Woo Cheon-Seok;Kang Won-Hee
    • Korean Journal of Plant Resources
    • /
    • v.19 no.2
    • /
    • pp.331-335
    • /
    • 2006
  • This experiment was conducted to investigate the effect of deep sea water on fruit quality and yield of tomato. In the deep sea water treatments, fruit growth and weight were decreased as the concentration of deep sea water increased. Especially, the fresh weight of second truss was decreased significantly than first truss. Soluble solid content was increased significantly in higher concentration treatment especially at 30mM and 40mM treatment. That was increased more in the first than in the second truss fruits. Most of hexose in fruits were glucose and fructose. The reason of increased glucose and fructose contents was the decline of growth because of salinity stress by deep sea water treatment. however deep sea water treatment increased the lycopene content, especially in 20mM treatment. It is assumed that deep sea water treatment cause induction and promotion of ethylene. The higher concentration of deep sea water to the solution, the eater fruit quality improvement was noticed. However, proportional yield reduction accompanied concentration, 20mM deep sea water improved fruit quality without a significant yield reduction. The Re content was the highest among ginsenosides in all treatments. The contents total of ginsenosides in all treatments, except EC 8 treatment, was higher than those in the controlled treatment. The PT/PD value was 1.31 of the lowest in the EC 8 treatment and was 2.52 of the highest in the EC6 treatment. Rf contents in high increase was detected at all treated ginseng roots.

Field Study of Water Quality Improvement by Circulation, Sonication and Ozonation (수류확산과 초음파와 오존을 이용한 현장 수질 개선 평가)

  • Tekile, Andinet;Kim, Ilho;Lee, Jai-Yeop
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.170-180
    • /
    • 2017
  • The study used jet water flow, ultra-sonication and ozonation system units to investigate impact of the unit components on water quality of stagnant Yeo-cheon River reach, Korea. Samples were collected at six locations, before operation and after 1, 3 and 6 hrs of operation. By operating the water flow unit only, dissolved oxygen increased as high as 90% after 3 hr at 25 m downstream of the device and Chl-a was reduced by 80%. Incorporating sonication, greater than 80% of Chl-a was removed even at 100 m distance from the device. Besides, total dissolved phosphorus was reduced from an average value of $420({\pm}70){\mu}g/L$ before ultrasonic irradiation to $160({\pm}40){\mu}g/L$ after the treatment. Releasing ozone into the flow with sonication, Chl-a was considerably removed from the water column and ammonia nitrogen was also decreased to average value of $20{\mu}g/L$ from $60{\mu}g/L$. However, as only $3{\ast}10^{-3}mg/L$ of ozone was used for safety purpose and due to brief reaction time it takes, effect of integrating ozone to the system covered limited area. Generally, combining sonication to jet flow is promising in preventing algal bloom formation since it has effectively removed Chl-a from the water column.

Application of ecosystem modeling for the assessment of water quality in an eutrophic marine environment; Jinhae Bay (부영양화된 해양환경의 수질개선을 위한 해양생태계모델링의 적용 ; 한국의 진해만)

  • Lee, Won-Chan;Park, Sung-Eun;Hong, Sok-Jin;Oh, Hyun-Taik;Jung, Rea-Hong;Koo, Jun-Ho
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.217-219
    • /
    • 2006
  • This study focused an water quality response to land-based pollution loads and the appropriate pollutant load reduction in Chinhae Bay using an eco-hydrodynamic model. Land-based discharge foam urban areas, industrial complex and sewage treatment plant was the greatest contributor to cause red-tide blooms and summer hypoxia. Tidal currents velocity af the ebb tide was about 10 cm/s stronger than that of the flood tide. A residual current was simulated to. have a slightly complicated pattern with ranging from 0.1 to. 2.7 cm/s. In Masan Bay, pollutant materials cannot flaw from the inner to the outer bay easily because af residual currents flaw southward at surface and northward at the bottom. The simulation results of COD distribution showedhigh concentrations aver 3 mg/L in the inner part of Masan Bay related pollutant discharge, and charge, and lower levels less than 1.5mg/L in the central part of Chinhae Bay. For improvement water quality in Chinhae Bay, it is necessary to reduce the organic and inorganic loads from paint sources by mare than 50% and ameliorate severe polluted sediment.

  • PDF

A Study on Clogging and Water Quality Improvement in Floodplain Filtration with Flood/rest Raw-water Supply (범람/휴지식 홍수터여과에서 폐색현상 및 수질개선도 연구)

  • Kim, Hoh-Seok;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.120-131
    • /
    • 2011
  • A pilot-scale experiment of floodplain filtration with a filtration depth of 3.6m was performed employing flood/rest type raw-water supply system in an effort to find ways to improve river water quality by additional treatments of discharged effluent from sewage treatment plant. Soil samples were taken from 3 sites including Gumi, Daegu and Gimhae along the Nakdong river. Reductions of infiltration rates following increases in operating time was investigated in each soil sample, along with the analysis of removal efficiencies of various pollutants according to different depths and infiltration rates. The results show incremental development of clogging on the soil surface with increases in operation time, and illustrate exponential decrease in the infiltration rate. The time required for the removal of the clog from the soil surface was longer than 2 weeks for all soil samples analyzed. The stable infiltration rates for soils were 5 m/day for Gumi and for Daegu and Gimhae was 1 m/day. In unsaturated soils dissolved oxygen levels increased following the increase of filtration depth, suggesting that alternating application of flood and rest for raw-water supply effectively keeps the soil environment aerobic. For all soils, the nature of pollutant removal depending on the depth of filtration remained the same regardless of the infiltration rate. Most of the BOD and turbidity were removed within 1.2 m, about 30% of COD was removed within 3.6m and was expected to be removed further with increases in filtration depth. Nitrification occurred near the surface of all soils; however there was no significant removal of nitrogen in the filtration depths tested in this study. Although removal rate of phosphorus was low for Gumi's soil, it was high enough for other soils, suggesting that the method developed in this study could significantly improve river water quality.

The characteristics of discharged non-point pollutants on Hwa-sung lake inflow streams on precipitation (화성호 유입하천의 강우시 비점오염물질 유출특성)

  • Lee, Sang Eun;Choi, I Song;Lee, In Ho;Hong, Dae Byuk;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.651-661
    • /
    • 2011
  • The purpose of this study is to estimate the characteristics and pollutant loadings of non-point pollutants that flowed in the streams on precipitation for pollutant loading reduction of Hwa-sung lake inflow streams. Although it has been made an effort to improve the water quality of Hwa-sung basin through the strategies for the preservation of water quality, it is shown that the water quality is not greatly improved. Because it has been industrialized and urbanized near Hwa-sung basin so that it is difficult to reduce the water pollution due to the increase in pollutant loadings of point and non-point sources. In this study, it is investigated the outflow characteristics of non-point pollutants that discharged with storm runoff and estimated the effect of runoff on Hwa-sung basin. The final goal of this study is to utilize the basic information for proper management and strategies of non-point sources on Hwa-sung basin. At the result of inflow streams, Ja-an stream that has the greatest pollutant loadings on precipitation is strongly influenced on the water quantity of Hwa-sung basin. On the other hand, it is shown that Nam-yang stream is strongly influenced on the SS concentration of Hwasung basin among them. Also, all streams; Nam-yang, Ja-ahn, Ah-eun stream; has the degree of slope more than or near 1 in the correlation results so that they have strong pollutant loading impact and the concentration of SS is the highest among other pollutants. So, specific studies on initial rain phenomena are more necessary to manage the pollutants economically. Also, the proper control of SS concentration is required to manage the effluent pollutants effectively on precipitation. So, it is necessary to consider the strategies for non-point pollutants as well as point pollutants when the new management is imposed to reduce the pollutant load for improvement of Hwa-sung basin.

Issue Difference of Ecosystem Service Demand and Supply through Text Mining Analysis: Case Study of Shiheung using Complaints and Urban Planning Materials (텍스트 마이닝 분석을 통한 생태계서비스 수요-공급의 이슈 차이분석 - 시흥시 민원과 도시계획 자료를 활용하여 -)

  • Lee, Jae-hyuck;Park, Hong-jun;Kim, Il-kwon;Kwon, Hyuk-soo
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.3
    • /
    • pp.63-71
    • /
    • 2018
  • The comparison of demand and supply is needed for efficient ecosystem services planning. However, the gap between them cannot be analyzed as existing studies mainly dealt with only the supply of ecosystem services. This study compares the demand and supply of ecosystem services in Shiheung using environmental complaints and urban planning by semantic network analysis. As a result, 'air' and 'water' quality are magnified in demand, 'energy' and 'water' are crucial in supply. This result presents that citizen ask for the improvement of air quality in regulation services, although local government has plans for energy support in provisioning services. Periodic ecosystem services demand and supply monitoring will be the base of effective ecosystem services planning, which reduce insufficiency and surplus.

Application and Improvement Plan of the Comprehensive Assessment for River Environments - Focusing on Tributary Streams of the Han River in Seoul - (하천환경종합평가의 적용 및 개선방안 - 서울시 한강 지류하천을 중심으로 -)

  • Ahn, Hong-Kyu;Lee, Sang-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.6
    • /
    • pp.441-452
    • /
    • 2020
  • The assessment of the river environment is widely applied as a method to establish the purpose and direction of river rehabilitation projects. This includes surveying and assessing the current state of the river environment and determining whether a previous river project was properly executed. The city of Seoul executed ecological river rehabilitation activities for the tributaries of the Han River from the 2000s following a masterplan to recover the physical shape and ecological functionality of damaged rivers. After the rehabilitation activities, the river environment had been changed substantially. In this study, physical properties, water quality properties, and ecological properties were assessed for 28 tributaries underthe control of the city of Seoul, and then those 3 properties were synthetically reassessed. From the result of the study on the physical properties, it was found that mostrivers had II-III grades. As for water quality properties, rivers had III-IV grades. The damaged rivers showed low grades of D-E based on the Aquatic Ecosystem Health evaluation. Accordingly, we concluded that all rivers of Seoul City have an unhealthy environment in terms of water quality and Aquatic Ecosystem Health, therefore it is regarded that long-term and systematic improvements are required.