• Title/Summary/Keyword: Improvement of Surface Layer

Search Result 474, Processing Time 0.03 seconds

Adhesion Improvement for Copper Process in TFT-LCD

  • Tu, Kuo-Yuan;Tsai, Wen-Chin;Lai, Che-Yung;Gan, Feng-Yuan;Liau, Wei-Lung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1640-1644
    • /
    • 2006
  • The first issue that should be overcome in copper process is its poor adhesive strength between pure copper film and glass substrate. In this study, defining the adhesive strength of pure copper film on various substrates and clarifying the key deposition parameters are presented for the investigation of copper process. First, using different kinds of surface plasma treatments were studied and the results showed that the adhesive strength was not improved even though the roughness of glass substrate surface was increased. Second, adding an adhesive layer between glass substrate and pure copper film was used to enhance the adhesion. Based on the data in the present paper, adopting copper alloy film as an adhesive layer can have capability preventing peeling problem in copper process. Besides, Cu/Cu alloy structure could be etched with the same etchant with better taper angle than the one with single layer of Cu. Unlike Cu/Mo structure, there is no residual problem for Cu/Cu alloy structure during etching process. Finally, this structure was examined in electrical test without significant difference in comparison with the conventional metal process.

  • PDF

A Study on the Mechanical and Physical Properties of Sawdustboard combined with Plastic Chip (플라스틱칩 결체(結締) 톱밥보드의 기계적(機械的) 및 물리적(物理的) 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.44-55
    • /
    • 1987
  • In order to study the effect of sawdustboard combined with plastic chips, 0.5mm($T_1$), 1mm($T_2$), 1.4mm($T_3$) thick nylon fiber. polypropylene rope fiber(RP), and 0.23mm thick moth-proof polypropylene net fiber(NP) were cut into 0.5, 1, 2cm long plastic chips. Thereafter, sawdustboard combined with plastic chips prepared as the above and plastic non-combined sawdustboard(control) were manufactured into 3 types of one-, two-, and three layer with 5 or 10% combination level. By the discussions and results at this study, the significant conclusions of mechanical and physical properties were summarized as follows: 1. The MORs were shown in the order of 3 layer> 2 layer> 1 layer among plastic non-combined boards, and $T_3$ < $T_2$ < $T_1$ < RP (NP(5%) < NP(l0%) among plastic combined boards. In 2cm long plastic chip in 1 layer board, the highest strength through all the composition was recognized. 1 layer board showing the lower strength with 0.5cm plastic chip rendered to the bending strength improvement by 2 or 3 layer board composition. On the other hand, 2 or 3 layer combined with 1, 2cm long polypropylene net fiber chips incurred MOR's conspicuous decrease requiring optimum plastic chip combined level and consideration to combined type. 2. MOE in plastic non-combined 3 layer board exhibited sandwich construction effect by higher resin content application to surface layer in the order of 3layer>1layer>2layer with the highest stiffness of the board combined with polypropylene chip, while nylon chip-combined board had little difference from plastic non-combined board. In relevant to length and layer effect, 3 layer board combined with the 0.5cm long polypropylene net fiber chip in 5% and 10% combined level presented 34-43% and 44-76% stiffness increase against plastic non-combined board(control), respectively. Moreover, in 1 layer board, 30% stiffness increase with 10% against 5% combined level in the 1 and 2cm long polypropylene net fiber chip was obtained. 3. Stress at proportional limit(Spl) showing the fiber relationship (r: 0.81-0.97) between MOR presented in the order of 1 layer<2 layer<3 layer in plastic non-combined board. Correspondingly, combined effect by layer and plastic chip length was similar to MOR's. 4. Differently from previous properties(MOR, MOE, Spl). work to maximum load(Wml) of 2 layer board approached to that of 3 layer board. Conforming the above phenomenon. 2 layer combined with 0.5cm long polypropylene net fiber chip kept the greater work than 1 layer. The polypropylene combined board superior to nylon -and plastic non - combined board seemed to have greater anti - failing capacity. 5. Internal bond strength(IB), in contrast to MOR's tendency. showed in the order of T1

  • PDF

Magnetic Sensitivity Improvement of 2-Dimensional Silicon Vertical Hall Device (2 차원 Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.392-396
    • /
    • 2014
  • The 2-dimensional silicon vertical Hall devices, which are sensitive to X,Y components of the magnetic field parallel to the surface of the chip, are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$ interface and n-epi layer to improve the sensitivity and influence of interface effect. Experimental samples are a sensor type K with and type J without $p^+$ isolation dam adjacent to the center current electrode. The results for both type show a more high sensitivity than the former's 2-dimensional vertical Hall devices and a good linearity. The measured non-linearity is about 0.8%. The sensitivity of type J and type K are about 66 V/AT and 200 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

The Effect of Passivation Film with Inorganic/Epoxy Layers on Life Time Characteristics of OLED Device (OLED 내구성에 미치는 무기/에폭시층 보호막의 영향)

  • Lim, Jung-A;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.287-293
    • /
    • 2009
  • The passivation films with epoxy layer on LiF, $SiN_x$ and LiF/$SiN_x$ inorganic layer were fabricated on OLED to protect device from the direct damage of $O_2$ and $H_2O$ and to apply for a buffer layer between OLED device and passivation multi-layer with organic/inorganic hybrid structure as to diminish the thermal stress and expansion. Red OLED doped with 1 vol.% Rubrene in $Alq_3$ was used as a basic device. The device structure was multi-layer of ITO(150 nm) / ELM200_HIL(50 nm) / ELM002_HTL(30 nm) / $Alq_3$: 1 vol.% Rubrene(30 nm) / $Alq_3$(30 nm) / LiF(0.7 nm) / Al(100 nm). LiF/epoxy applied as a protective layer didn't contribute to the improvement of life time. While in case of $SiN_x$/epoxy, damage was done in the passivation process because of difference in heat expansion between films which could occur during the formation of epoxy film. Using LiF/$SiN_x$/epoxy improved lifetime significantly without suffering damage in the process of forming films, therefore, the best structure of passivation film with inorganic/epoxy layers was LiF/$SiN_x$/E1.

AERODYNAMIC DESIGN OF A BUMP-TYPE INLET

  • Kim, Sang-Dug;Song, Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.262-267
    • /
    • 2008
  • Numerical investigations were performed with an external-compression inlet with a three-dimensional bump at Mach 2 to scrutinize the geometrical effects of the bump in controlling the interaction of a shock wave with a boundary layer. The inlet was designed for two oblique shock waves and a terminal normal shock wave followed by a subsonic diffuser, with a circular cross-section throughout. The bump-type inlet that replaced the aft ramp of the conventional ramp-type inlet was optimized with respect to the inlet performance parameters as well as compared with the conventional ramp-type inlet. The current numerical simulations showed that a bump-type inlet can provide an improvement in the total pressure recovery downstream of the shock wave/boundary layer interaction over a conventional ramp-type inlet.

  • PDF

AERODYNAMIC DESIGN OF A BUMP-TYPE INLET

  • Kim, Sang-Dug;Song, Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.262-267
    • /
    • 2008
  • Numerical investigations were performed with an external-compression inlet with a three-dimensional bump at Mach 2 to scrutinize the geometrical effects of the bump in controlling the interaction of a shock wave with a boundary layer. The inlet was designed for two oblique shock waves and a terminal normal shock wave followed by a subsonic diffuser, with a circular cross-section throughout. The bump-type inlet that replaced the aft ramp of the conventional ramp-type inlet was optimized with respect to the inlet performance parameters as well as compared with the conventional ramp-type inlet. The current numerical simulations showed that a bump-type inlet can provide an improvement in the total pressure recovery downstream of the shock wave/boundary layer interaction over a conventional ramp-type inlet.

  • PDF

Improvement on the Passivation Effect of PA-ALD Al2O3 Layer Deposited by PA-ALD in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지를 위한 PA-ALD Al2O3 막의 패시베이션 효과 향상 연구)

  • Song, Se Young;Kang, Min Gu;Song, Hee-Eun;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.754-759
    • /
    • 2013
  • Aluminum oxide($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surfaces. Since $Al_2O_3$ has fixed negative charge, it forms effective surface passivation by field effect passivation on the rear side in p-type silicon solar cell. However, $Al_2O_3$ layer formed by ALD process needs very long process time, which is not applicable in mass production of silicon solar cells. In this paper, plasma-assisted ALD(PA-ALD) was applied to form $Al_2O_3$ to reduce the process time. $Al_2O_3$ synthesized by ALD on c-Si (100) wafers contains a very thin interfacial $SiO_2$ layer, which was confirmed by FTIR and TEM. To improve passivation quality of $Al_2O_3$ layer, the deposition temperature was changed in range of $150{\sim}350^{\circ}C$, then the annealing temperature and time were varied. As a result, the silicon wafer with aluminum oxide film formed in $250^{\circ}C$, $400^{\circ}C$ and 10 min for the deposition temperature, the annealing temperature and time, respectively, showed the best lifetime of 1.6ms. We also observed blistering with nanometer size during firing of $Al_2O_3$ deposited on p-type silicon.

Effect of Plasma Treatment on TiO2/TiO2-x Resistance Random Access Memory (플라즈마 표면처리가 TiO2/TiO2-x 저항 변화형 메모리에 미치는 영향)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.454-459
    • /
    • 2020
  • In this study, a TiO2/TiO2-x-based resistance variable memory was fabricated using a DC/RF magnetron sputtering system and ALD. In order to analyze the effect of oxygen plasma treatment on the performance of resistance random access memory (ReRAM), the TiO2/TiO2-x-based ReRAM was evaluated by applying RF power to the TiO2-x oxygen-holding layer at 30, 60, 90, 120, and 150 W, respectively. The ReRAM was fabricated, and the electrical and surface area performances were compared and analyzed. In the case of ReRAM without oxygen plasma treatment, the I-V curve had a hysteresis curve shape, but the width was very small, with a relatively high surface roughness of the oxygen-retaining layer. However, in the case of oxygen plasma treatment, the HRS/LRS ratio for the I-V curve improved as the applied RF power increased; stable improvement was also noted in the surface roughness of the oxygen-retaining layer. It was confirmed that the low voltage drive was not smooth due to charge trapping in the oxygen diffusion barrier layer owing to the high intensity ReRAM applied with an RF power of approximately 150 W.

Effects of Surface Treatment using Oxide-Dispersion-Strengthening on the Mechanical Properties of Zr-based Fuel Cladding Tubes (산화물 분산강화 표면처리에 따른 지르코늄 피복관의 기계적 강도)

  • Jung, Yang-Il;Kim, Il-Hyun;Kim, Hyun-Gil;Jang, Hun;Lee, Seung-Jae
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.271-276
    • /
    • 2019
  • Oxide-dispersion-strengthened (ODS) alloy has been developed to increase the mechanical strength of metallic materials; such an improvement can be realized by distributing fine oxide particles within the material matrix. In this study, the ODS layer was formed in the surface region of Zr-based alloy tubes by laser beam treatment. Two kinds of Zr-based alloys with different alloying elements and microstructures were used: KNF-M (recrystallized) and HANA-6 (partial recrystallized). To form the ODS layer, $Y_2O_3$-coated tubes were scanned by a laser beam, which induced penetration of $Y_2O_3$ particles into the substrates. The thickness of the ODS layer varied from 20 to $55{\mu}m$ depending on the laser beam conditions. A heat affected zone developed below the ODS layer; its thickness was larger in the KNF-M alloy than in the HANA-6 alloy. The ring tensile strengths of the KNF-M and HANA-6 alloy samples increased more than two times and 20-50%, respectively. This procedure was effective to increase the strength while maintaining the ductility in the case of the HANA-6 alloy samples; however, an abrupt brittle facture was observed in the KNF-M alloy samples. It is considered that the initial microstructure of the materials affects the formation of ODS and the mechanical behavior.

The improvement in the properties of $(Ba, Sr)TiO_3$films by the application of amorphous layer (비정질 $(Ba, Sr)TiO_3$층의 도입을 통한 $(Ba, Sr)TiO_3$박막의 특성 향상)

  • 백수현;이공수;마재평;박치선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.221-226
    • /
    • 1998
  • Amorphous (Ba, Sr)$TiO_3$[BST] layer(30, 70 nm) was introduced between crystalline BST and $RuO_2$electrode to realize double-layered BST structure in order to improve the properties of BST film. The structure and surface morphology of double-layered BST film were modified by the application of amorphous BST layer; that is, surface became smoother and grain size increased abruptly. Amorphous layer thicker than 30 nm was effective to hinder the influence of $RuO_2$surface on the structure of as-grown BST films by in-situ process. Dielectric constant of double-layered BST film was improved dramatically from 152 to 340 and leakage current was lowered from $1.25{\times}10^{-5}A/{\textrm}{cm}^2);to;6.85{\times}10^{-7}A/{\textrm}{cm}^2$, respectively.

  • PDF