Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.6.454

Effect of Plasma Treatment on TiO2/TiO2-x Resistance Random Access Memory  

Kim, Han-Sang (College of Electrical and Computer Engineering, Chungbuk National University)
Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.6, 2020 , pp. 454-459 More about this Journal
Abstract
In this study, a TiO2/TiO2-x-based resistance variable memory was fabricated using a DC/RF magnetron sputtering system and ALD. In order to analyze the effect of oxygen plasma treatment on the performance of resistance random access memory (ReRAM), the TiO2/TiO2-x-based ReRAM was evaluated by applying RF power to the TiO2-x oxygen-holding layer at 30, 60, 90, 120, and 150 W, respectively. The ReRAM was fabricated, and the electrical and surface area performances were compared and analyzed. In the case of ReRAM without oxygen plasma treatment, the I-V curve had a hysteresis curve shape, but the width was very small, with a relatively high surface roughness of the oxygen-retaining layer. However, in the case of oxygen plasma treatment, the HRS/LRS ratio for the I-V curve improved as the applied RF power increased; stable improvement was also noted in the surface roughness of the oxygen-retaining layer. It was confirmed that the low voltage drive was not smooth due to charge trapping in the oxygen diffusion barrier layer owing to the high intensity ReRAM applied with an RF power of approximately 150 W.
Keywords
$TiO_2$; Resistance random access memory; Oxygen plasma treatment; Atomic force microscope;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. J. Song, J. Y. Seok, J. H. Yoon, K. M. Kim, G. H. Kim, M. H. Lee, and C. S. Hwang, Sci. Rep., 3, 3443 (2013). [DOI: https://doi.org/10.1038/srep03443]   DOI
2 M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, IEEE Electron Device Lett., 32, 1579 (2011). [DOI: https://doi.org/10.1109/LED.2011.2163697]   DOI
3 Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, Adv. Mater., 24, 1844 (2012). [DOI: https://doi.org/10.1002/adma.201104104]   DOI
4 J. W. Choi, Y. S. Mo, and H. J. Song, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 658 (2015). [DOI: https://doi.org/10.4313/JKEM.2015.28.10.658]   DOI
5 J. H. Kim, K. H. Nam, and H. B. Chung, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 81 (2014). [DOI: https://doi.org/10.4313/JKEM.2014.27.2.81]   DOI
6 N. Singh, M. Seshadri, M. S. Pathak, and V. Singh, Solid State Sci., 87 (2019). [DOI: https://doi.org/10.1016/j.solidstatesciences.2018.09.003]
7 K. Ahmad, P. Kumar, and S. M. Mobin, Nanoscale Adv., 2, 502 (2020). [DOI: https://doi.org/10.1039/C9NA00573K]   DOI
8 A. Sahoo, P. Padhan, and W. Prellier, ACS Appl. Mater. Interfaces, 9, 36423 (2017). [DOI: https://doi.org/10.1021/acsami.7b11930]   DOI
9 S. Mansouri, S. Jandl, A. Mukhin, V. Y. Ivanov, and A. Balbashov, Sci. Rep., 7, 13796 (2017). [DOI: https://doi.org/10.1038/s41598-017-12714-8]   DOI
10 R. U. Chandrasena, W. Yang, Q. Lei, M. U. Delgado-Jaime, K. D. Wijesekara, M. Golalikhani, B. A. Davidson, E. Arenholz, K. Kobayashi, M. Kobata, F.M.F. de Groot, U. Aschauer, N. A. Spaldin, X. Xi, and A. X. Gray, Nano Lett., 17, 794 (2017). [DOI: https://doi.org/10.1021/acs.nanolett.6b03986]   DOI
11 T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterluti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J. A. Schwenzer, M. Hetterich, U. Lemmer, B. S. Richards, M. Powalla, and U. W. Paetzold, Adv. Energy Mater., 9, 1802995 (2019). [DOI: https://doi.org/10.1002/aenm.201802995]   DOI
12 J. Low, B. Dai, T. Tong, C. Jiang, and J. Yu, Adv. Mater., 31, 1802981 (2018). [DOI: https://doi.org/10.1002/adma.201802981]   DOI
13 C. Gao, T. Wei, Y. Zhang, X. Song, Y. Huan, H. Liu, M. Zhao, J. Yu, and X. Chen, Adv. Mater., 31, 1806596 (2019). [DOI: https://doi.org/10.1002/adma.201806596]   DOI
14 X. Zhou, W. Guo, J. Fu, Y. Zhu, Y. Huang, and P. Peng, Appl. Surf. Sci., 494, 684 (2019). [DOI: https://doi.org/10.1016/j.apsusc.2019.07.159]   DOI
15 A. Meng, L. Zhang, B. Cheng, and J. Yu, Adv. Mater., 31, 1807660 (2019). [DOI: https://doi.org/10.1002/adma.201807660]   DOI
16 J. Singh, S. A. Khan, J. Shah, R. K. Kotnala, and S. Mohapatra, Appl. Surf. Sci., 422, 953 (2017). [DOI: https://doi.org/10.1016/j.apsusc.2017.06.068]   DOI
17 A. Kogo, Y. Sanehira, Y. Numata, M. Ikegami, and T. Miyasaka, ACS Appl. Mater. Interfaces, 10, 2224 (2018). [DOI: https://doi.org/10.1021/acsami.7b16662]   DOI
18 L. Huttenhofer, F. Eckmann, A. Lauri, J. Cambiasso, E. Pensa, Y. Li, E. Cortes, I. D. Sharp, and S. A. Maier, ACS Nano, 14, 2456 (2020). [DOI: https://doi.org/10.1021/acsnano.9b09987]   DOI
19 Y. Yang, L. C. Yin, Y. Gong, P. Niu, J. Q. Wang, L. Gu, X. Chen, G. Liu, L. Wang, and H. M. Cheng, Adv. Mater., 30, 1704479 (2018). [DOI: https://doi.org/10.1002/adma.201704479]   DOI
20 J. Nam, J. H. Kim, C. S. Kim, J. D. Kwon, and S. Jo, ACS Appl. Mater. Interfaces, 12, 126648 (2020). [DOI: https://doi.org/10.1021/acsami.9b18660]
21 H. He, D. Huang, W. Pang, D. Sun, Q. Wang, Y. Tang, X. Ji, Z. Guo, and H. Wang, Adv. Mater., 30, 1801013 (2018). [DOI: https://doi.org/10.1002/adma.201801013]   DOI
22 L. Zhang, Z. Chen, J. J. Yang, B. Wysocki, N. McDonald, and Y. Chen, Appl. Phys. Lett., 102, 153503 (2013). [DOI: https://doi.org/10.1063/1.4802206]   DOI
23 L. Michalas, S. Stathopoulos, A. Khiat, and T. Prodromakis, Appl. Phys. Lett., 113, 143503 (2018). [DOI: https://doi.org/10.1063/1.5040936]   DOI
24 Y. Beilliard, F. Paquette, F. Brousseau, S. Ecoffey, F. Alibart, and D. Drouin, AIP Adv., 10, 025305 (2020). [DOI: https://doi.org/10.1063/1.5140994]   DOI
25 A. Mazady and M. Anwar, IEEE Trans. Electron Devices, 61, 1054 (2014). [DOI: https://doi.org/10.1109/TED.2014.2304436]   DOI
26 P. F. Cai, J. B. You, X. W. Zhang, J. J. Dong, X. L. Yang, Z. G . Yin, a nd N . F . Chen, J. Appl. Phys., 105, 083713 (2009). [DOI: https://doi.org/10.1063/1.3108543]   DOI
27 Y. C. Hong, C. U. Bang, D. H. Shin, and H. S. Uhm, Chem. Phys. Lett., 413, 454 (2005). [DOI: https://doi.org/10.1016/j.cplett.2005.08.027]   DOI
28 D. Sakellaropoulos, P. Bousoulas, and D. Tsoukalas, J. Appl. Phys., 126, 044501 (2019). [DOI: https://doi.org/10.1063/1.5094242]   DOI
29 H. Nili, A. F. Vincent, M. Prezesio, M. R. Mahmoodi, I. Kataeva, and D. B. Strukov, IEEE Trans. Nanotechnol., 19, 344 (2020). [DOI: https://doi.org/10.1109/TNANO.2020.2982128]   DOI