• Title/Summary/Keyword: Improved optimizer

Search Result 42, Processing Time 0.024 seconds

Improvement of multi layer perceptron performance using combination of adaptive moments and improved harmony search for prediction of Daecheong Dam inflow (대청댐 유입량 예측을 위한 Adaptive Moments와 Improved Harmony Search의 결합을 이용한 다층퍼셉트론 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.63-74
    • /
    • 2023
  • High-reliability prediction of dam inflow is necessary for efficient dam operation. Recently, studies were conducted to predict the inflow of dams using Multi Layer Perceptron (MLP). Existing studies used the Gradient Descent (GD)-based optimizer as the optimizer among MLP operators to find the optimal correlation between data. However, the GD-based optimizers have disadvantages in that the prediction performance is deteriorated due to the possibility of convergence to the local optimal value and the absence of storage space. This study improved the shortcomings of the GD-based optimizer by developing Adaptive moments combined with Improved Harmony Search (AdamIHS), which combines Adaptive moments among GD-based optimizers and Improved Harmony Search (IHS). In order to evaluate the learning and prediction performance of MLP using AdamIHS, Daecheong Dam inflow was learned and predicted and compared with the learning and prediction performance of MLP using GD-based optimizer. Comparing the learning results, the Mean Squared Error (MSE) of MLP, which is 5 hidden layers using AdamIHS, was the lowest at 11,577. Comparing the prediction results, the average MSE of MLP, which is one hidden layer using AdamIHS, was the lowest at 413,262. Using AdamIHS developed in this study, it will be possible to show improved prediction performance in various fields.

An integrated particle swarm optimizer for optimization of truss structures with discrete variables

  • Mortazavi, Ali;Togan, Vedat;Nuhoglu, Ayhan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.359-370
    • /
    • 2017
  • This study presents a particle swarm optimization algorithm integrated with weighted particle concept and improved fly-back technique. The rationale behind this integration is to utilize the affirmative properties of these new terms to improve the search capability of the standard particle swarm optimizer. Improved fly-back technique introduced in this study can be a proper alternative for widely used penalty functions to handle existing constraints. This technique emphasizes the role of the weighted particle on escaping from trapping into local optimum(s) by utilizing a recursive procedure. On the other hand, it guaranties the feasibility of the final solution by rejecting infeasible solutions throughout the optimization process. Additionally, in contrast with penalty method, the improved fly-back technique does not contain any adjustable terms, thus it does not inflict any extra ad hoc parameters to the main optimizer algorithm. The improved fly-back approach, as independent unit, can easily be integrated with other optimizers to handle the constraints. Consequently, to evaluate the performance of the proposed method on solving the truss weight minimization problems with discrete variables, several benchmark examples taken from the technical literature are examined using the presented method. The results obtained are comparatively reported through proper graphs and tables. Based on the results acquired in this study, it can be stated that the proposed method (integrated particle swarm optimizer, iPSO) is competitive with other metaheuristic algorithms in solving this class of truss optimization problems.

Illumination correction via improved grey wolf optimizer for regularized random vector functional link network

  • Xiaochun Zhang;Zhiyu Zhou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.816-839
    • /
    • 2023
  • In a random vector functional link (RVFL) network, shortcomings such as local optimal stagnation and decreased convergence performance cause a reduction in the accuracy of illumination correction by only inputting the weights and biases of hidden neurons. In this study, we proposed an improved regularized random vector functional link (RRVFL) network algorithm with an optimized grey wolf optimizer (GWO). Herein, we first proposed the moth-flame optimization (MFO) algorithm to provide a set of excellent initial populations to improve the convergence rate of GWO. Thereafter, the MFO-GWO algorithm simultaneously optimized the input feature, input weight, hidden node and bias of RRVFL, thereby avoiding local optimal stagnation. Finally, the MFO-GWO-RRVFL algorithm was applied to ameliorate the performance of illumination correction of various test images. The experimental results revealed that the MFO-GWO-RRVFL algorithm was stable, compatible, and exhibited a fast convergence rate.

A Study on the Design of Wired and Wireless Communication System for Solar Panel Optimizer (태양광 패널 최적기의 유선 및 무선 통신 시스템 설계에 관한 연구)

  • Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.32-37
    • /
    • 2019
  • In this paper, we have designed a solar photovoltaic system to attach solar photovoltaic modules to each module and develop the best efficiency in each module. The efficiency of the designed solar panel optimizer was more than 99.27% and MPPT efficiency of 99.66%. In addition, the monitoring of power generation and abnormal operation phenomenon in each optimum period and tracking for failure location of specific photovoltaic module have improved the utilization rate of photovoltaic power generation. Wired and wireless communication methods has been proposed to monitor the power generation and operation status of the solar panel optimizer. For this purpose, the RS485 communication was used for wire communication and Zigbee communication was used for wireless communication to monitor the status of each module in real time. It is shown that communication redundancy can be achieved through the proposed method, and the possibility of commercialization is suggested.

Novel Optimizer AdamW+ implementation in LSTM Model for DGA Detection

  • Awais Javed;Adnan Rashdi;Imran Rashid;Faisal Amir
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.133-141
    • /
    • 2023
  • This work take deeper analysis of Adaptive Moment Estimation (Adam) and Adam with Weight Decay (AdamW) implementation in real world text classification problem (DGA Malware Detection). AdamW is introduced by decoupling weight decay from L2 regularization and implemented as improved optimizer. This work introduces a novel implementation of AdamW variant as AdamW+ by further simplifying weight decay implementation in AdamW. DGA malware detection LSTM models results for Adam, AdamW and AdamW+ are evaluated on various DGA families/ groups as multiclass text classification. Proposed AdamW+ optimizer results has shown improvement in all standard performance metrics over Adam and AdamW. Analysis of outcome has shown that novel optimizer has outperformed both Adam and AdamW text classification based problems.

Energy-Efficient Routing Protocol for Wireless Sensor Networks Based on Improved Grey Wolf Optimizer

  • Zhao, Xiaoqiang;Zhu, Hui;Aleksic, Slavisa;Gao, Qiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2644-2657
    • /
    • 2018
  • To utilize the energy of sensor nodes efficiently and extend the network lifetime maximally is one of the primary goals in wireless sensor networks (WSNs). Thus, designing an energy-efficient protocol to optimize the determination of cluster heads (CHs) in WSNs has become increasingly important. In this paper, we propose a novel energy-efficient protocol based on an improved Grey Wolf Optimizer (GWO), which we refer to as Fitness value based Improved GWO (FIGWO). It considers a fitness value to improve the finding of the optimal solution in GWO, which ensures a better distribution of CHs and a more balanced cluster structure. According to the distance to the CHs and the BS, sensor nodes' transmission distance are recalculated to reduce the energy consumption. Simulation results demonstrate that the proposed approach can prolong the stability period of the network in comparison to other algorithms, namely by 31.5% in comparison to SEP, and even by 57.8% when compared with LEACH protocol. The results also show that the proposed protocol performs well over the above comparative protocols in terms of energy consumption and network throughput.

Multi-step wind speed forecasting synergistically using generalized S-transform and improved grey wolf optimizer

  • Ruwei Ma;Zhexuan Zhu;Chunxiang Li;Liyuan Cao
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.461-475
    • /
    • 2024
  • A reliable wind speed forecasting method is crucial for the applications in wind engineering. In this study, the generalized S-transform (GST) is innovatively applied for wind speed forecasting to uncover the time-frequency characteristics in the non-stationary wind speed data. The improved grey wolf optimizer (IGWO) is employed to optimize the adjustable parameters of GST to obtain the best time-frequency resolution. Then a hybrid method based on IGWO-optimized GST is proposed to validate the effectiveness and superiority for multi-step non-stationary wind speed forecasting. The historical wind speed is chosen as the first input feature, while the dynamic time-frequency characteristics obtained by IGWO-optimized GST are chosen as the second input feature. Comparative experiment with six competitors is conducted to demonstrate the best performance of the proposed method in terms of prediction accuracy and stability. The superiority of the GST compared to other time-frequency analysis methods is also discussed by another experiment. It can be concluded that the introduction of IGWO-optimized GST can deeply exploit the time-frequency characteristics and effectively improving the prediction accuracy.

Model-based Predictive Control Approach to Continuous Process based on Iterative Learning Concept

  • Chin, In-Sik;Cho, Moon-Ki;Lee, Jay-H;Lee, Kwang-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41.1-41
    • /
    • 2001
  • Since the advanced control technique such as model predictive control has been introduced to industrial plant, there have been many progresses in the process control. As a way to improve the control performance, the on-line process optimizer was integrated with the advance controller. In this study, a control technique which improves the control. As the number of changes by the optimizer is increased, the control performance of the proposed algorithm is improved. Its control performance is shown via an numerical example.

  • PDF

Development of new artificial neural network optimizer to improve water quality index prediction performance (수질 지수 예측성능 향상을 위한 새로운 인공신경망 옵티마이저의 개발)

  • Ryu, Yong Min;Kim, Young Nam;Lee, Dae Won;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.73-85
    • /
    • 2024
  • Predicting water quality of rivers and reservoirs is necessary for the management of water resources. Artificial Neural Networks (ANNs) have been used in many studies to predict water quality with high accuracy. Previous studies have used Gradient Descent (GD)-based optimizers as an optimizer, an operator of ANN that searches parameters. However, GD-based optimizers have the disadvantages of the possibility of local optimal convergence and absence of a solution storage and comparison structure. This study developed improved optimizers to overcome the disadvantages of GD-based optimizers. Proposed optimizers are optimizers that combine adaptive moments (Adam) and Nesterov-accelerated adaptive moments (Nadam), which have low learning errors among GD-based optimizers, with Harmony Search (HS) or Novel Self-adaptive Harmony Search (NSHS). To evaluate the performance of Long Short-Term Memory (LSTM) using improved optimizers, the water quality data from the Dasan water quality monitoring station were used for training and prediction. Comparing the learning results, Mean Squared Error (MSE) of LSTM using Nadam combined with NSHS (NadamNSHS) was the lowest at 0.002921. In addition, the prediction rankings according to MSE and R2 for the four water quality indices for each optimizer were compared. Comparing the average of ranking for each optimizer, it was confirmed that LSTM using NadamNSHS was the highest at 2.25.

Triangular units based method for simultaneous optimizations of planar trusses

  • Mortazavi, Ali;Togan, Vedat
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.195-210
    • /
    • 2017
  • Simultaneous optimization of trusses which concurrently takes into account design variables related to the size, shape and topology of the structure is recognized as highly complex optimization problems. In this class of optimization problems, it is possible to encounter several unstable mechanisms throughout the solution process. However, to obtain a feasible solution, these unstable mechanisms somehow should be rejected from the set of candidate solutions. This study proposes triangular unit based method (TUBM) instead of ground structure method, which is conventionally used in the topology optimization, to decrease the complexity of search space of simultaneous optimization of the planar truss structures. TUBM considers stability of the triangular units for 2 dimensional truss systems. In addition, integrated particle swarm optimizer (iPSO) strengthened with robust technique so called improved fly-back mechanism is employed as the optimizer tool to obtain the solution for these class of problems. The results obtained in this study show the applicability and efficiency of the TUBM combined with iPSO for the simultaneous optimization of planar truss structures.