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Abstract 
 

To utilize the energy of sensor nodes efficiently and extend the network lifetime maximally is 
one of the primary goals in wireless sensor networks (WSNs). Thus, designing an 
energy-efficient protocol to optimize the determination of cluster heads (CHs) in WSNs has 
become increasingly important. In this paper, we propose a novel energy-efficient protocol 
based on an improved Grey Wolf Optimizer (GWO), which we refer to as Fitness value based 
Improved GWO (FIGWO). It considers a fitness value to improve the finding of the optimal 
solution in GWO, which ensures a better distribution of CHs and a more balanced cluster 
structure. According to the distance to the CHs and the BS, sensor nodes’ transmission 
distance are recalculated to reduce the energy consumption. Simulation results demonstrate 
that the proposed approach can prolong the stability period of the network in comparison to 
other algorithms, namely by 31.5% in comparison to SEP, and even by 57.8% when compared 
with LEACH protocol. The results also show that the proposed protocol performs well over 
the above comparative protocols in terms of energy consumption and network throughput. 
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1. Introduction 

With the widely deployment of sensors in many practical applications, wireless sensor 
networks (WSNs) are gaining more and more attention. In WSN, the sensor nodes are 
scattered to monitor humidity, temperature, pressure, etc. However, their computing power, 
battery capacity, and communication distance are very limited [1]. Besides, in many WSN 
scenarios, sensor nodes are deployed in harsh environments, which makes the replacement and 
recharge of failed nodes difficult and expensive. Moreover, once the sensor nodes are 
deployed in the area of interest, they keep operating until they run out of power. Therefore, 
how to design an energy-efficient routing protocol for WSN is one of the greatest challenges in 
prolonging the network’s lifespan [2]. 

Clustering based hierarchical routing protocol is particularly effective in improving energy 
efficiency and increasing network longevity by minimizing overall transmission distance and 
balancing energy consumption among the nodes during the network lifetime [3]. The sensing 
area is partitioned into multiple clusters using the clustering protocol. In each cluster, a certain 
node will perform the task of a leader node, the so called cluster head (CH). CH is the center of 
the cluster structure, its role is to communicate with the cluster members (CM), collect data 
from CMs, and send them to the base station (BS) after the fusion process. Thus, how to 
optimize the selection of CHs and obtain a better distributed cluster structure are the most 
important problem in clustering-based routing protocols. 

The remaining part of the paper is organized as follows. Section 2 describes related work in 
this area. Section 3 introduces the GWO method. Section 4 gives the details of the proposed 
algorithm. Section 5 presents simulation results and discussions. Finally, Section 6 concludes 
the paper. 

2. Related Work 
Numerous energy-efficient routing protocols have been designed on the basis of clustering 
structure [4]. In the following, we give a brief review of some selected clustering-based 
protocols, which are related to the current work. LEACH (Low Energy Adaptive Clustering 
Hierarchy) [5] was the first hierarchal protocol for homogeneous WSNs based on clustering. 
In LEACH, nodes are organized into clusters and there exists a single CH for each cluster. 
Data from all the other nodes within a cluster is transferred to the respective CH. CH consumes 
additional energy in comparison to the normal nodes. However, the random selection of CHs 
leads to excessive energy consumption of the CH. This is mainly because of the need for a 
higher transmission power to overcome the longer distance. Therefore, the node consumes 
more energy and dies quickly, which leads to a decrease of the network’s lifespan. The 
prolong stable election protocol (P-SEP) [6] was an improvement of the previously proposed 
SEP protocol. It proposes to prolong the stable period of fog-supported sensor networks by 
maintaining balanced energy consumption. Two-level nodes’ heterogeneities are considered 
in P-SEP: advanced and normal nodes. Both the advanced and normal nodes have the same 
opportunity to become CH. This approach shows improved performance in network lifetime. 
Another hierarchical routing algorithm was proposed in Ref. [7] for large-scale mobile ad hoc 
networks (LMANET). The protocol utilizes table-driven and on-demand routing to search 
dominant set of nodes, which composed by link expiration tiem and node’s relative degree to 
establish the intra-/inter-communication paths in LMANET. In the work presented by Ray et 
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al. [8], a midpoint approach based on the K-means algorithm was proposed. The nodes are 
sorted into different sets in accordance with their distance to the BS, thereby ensuring that CHs 
are uniformly distributed over the network. Ma et al. [9] proposed a clustering algorithm based 
on the residual energy of the node and the network. Nodes with less residual energy have 
lower chances to be selected as CH. The lifetime, throughput and energy efficiency of the 
network are enhanced through this technique. In Ref. [10], Park et al. presented an improved 
CH selection method based on K-means. The initial centroids are selected randomly, which 
results in different kinds of clusters in different runs. The residual energy of nodes is 
considered as a parameter of CH selection, but does not specify any proper estimation. 

As WSN routing becomes more challenging and complex, researchers have proposed 
many bio-inspired meta-heuristic algorithms. Ahmadi et al. [11] proposed an effective 
technique for preserving k-coverage and reliability of data with logical fault tolerance. In this 
algorithm, nodes’ residual energy and their neighbors’ information are known to each node. 
All network nodes are divided into coverage and communicative nodes, and then some nodes 
are re-categorized as clustering and dynamic nodes. The method shows good energy 
consumption efficiency. In the work by Al-Aboody et al. [12], a multi-level hybrid clustering 
routing protocol (MLHP) based on the GWO was proposed. The authors implemented the 
GWO algorithm at level two without changing the original algorithm. This algorithm is able to 
achieve better performance in network’s energy efficiency, lifetime, and stability period. 
However, this mechanism has a very long un-stability period, which results in an unstable data 
transmission. Ref. [13] presented an efficient cover set algorithm based on the Imperialist 
Competitive Algorithm (ICA). Considering the advantage of ICA, the proposed algorithm 
selects the sensor nodes in different cover sets and generates the cover sets to monitor all 
deployed targets. This approach performs well in terms of extending network lifetime. 

In this paper, we propose a fitness value based IGWO (FIGWO), which has the advantages 
of further prolonging the network lifetime. Several techniques are used in FIGWO for the 
selection of CHs: (1) instead of choosing initial CHs randomly, we apply a distance method for 
initial CHs selection; (2) FIGWO approach considers a fitness value as the weight in GWO, so 
that the nodes with higher fitness value are more likely to be selected as the CHs; (3) if the 
distance between a CM and its corresponding CH is greater than its distance to the BS, this 
CM will send its sensed information to the BS directly. Thus, a reduction in data transmission 
to related CH energy consumption can be achieved by keeping the communicating distance 
between CHs and the BS as well CMs and CHs short. As a result, the network lifetime is 
enhanced through the above mechanism. 

3. Grey Wolf Optimizer 
GWO is inspired by the social hierarchy and hunting behavior of grey wolf packs [14]. Wolves 
are categorized into four types. In the hunting (optimization), the α , β  and δ  wolves are 
responsible to evaluate the prey location (optimum), the rest wolves calculate the distance 
between themselves and the prey, then complete the encirclement of the prey. Here are the 
definitions with great importance in the GWO. 

Definition 1: Location of the wolves 
→→→→

+ ×−= DAXX t
p

t 1                                                       (1) 
→→→→

−××= αα 12 rA                                                       (2) 
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where 
→
+1tX  is the wolves’ position in the ( )tht 1+  iteration, 

→
t
pX  is the prey’s position in the tht  

iteration. 
→

A  is the convergence factor. 
→

α  is linearly decreased from 2 to 0 over the course of 

the iterations, and 
→

1r  is random vectors in the range [0,1]. 
→

D  is the distance between the 
wolves and the prey. It is mathematically modeled by the following equations: 

→→→→

−×= tt
p XXCD                                                       (3) 

→→

×= 22 rC                                                          (4) 

where 
→

t
pX  is the prey’s position in the tht  iteration, and 

→
tX  is the wolf’s position in the tht  

iteration, and 
→

C  is the coefficient vectors calculated in (4), 
→

2r  is a random vector between 0 
and 1. 

Definition 2: Location of the prey 
Among the wolves, the α , β  and δ  wolves are closest to the prey, and they have the most 

extensive experience, so they can determine where the prey is located. Therefore, the location 
of the prey can be calculated as: 

3

111
1

→
+

→
+

→
+→

+ ++
=

ttt
t
p

XXX
X δβα                                      (5) 

where 
→
+1tXα  , 

→
+1tX β  and 

→
+1tX δ  are the position of α  wolf, β  wolf and δ  wolf in the 

( )tht 1+  iteration, respectively. They are all calculated with accordance to equation (1). 
In the algorithm presented in this paper, we assume that grey wolves are the sensor nodes 

and the prey is the CH. 

4. The Proposed Algorithm 
In this section, the fitness value-based improved GWO algorithm (FIGWO) is presented in 
detail. The main objective of the proposed study is to enhance the network lifetime and 
minimize the energy consumption of sensor nodes. Similar to the traditional clustering routing 
protocols in WSNs, the FIGWO defines rounds and each round is divided into cluster building 
phase and data transmission phase. 
4.1 Network Model 
In the network model, the following assumptions are made: 

(1) The BS is located in the center of the sensing area and is externally powered. 
(2) All nodes are randomly distributed, and once deployed, the nodes are not changing their 

positions.  
(3) All sensors nodes are homogeneous and have the function of data fusion. 
(4) After deployment, the BS knows all the information of all sensor nodes. And the 

algorithm for the selection of CHs is executed in the BS. 
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4.2 Energy Model 
The energy model used here is similar to that presented in [12]. To transmit a l -bit long data 
packet over the distance d , the required energy is: 







>××+×

<××+×
=

0
4

0
2

,

,
),(

ddifdlEl

ddifdlEl
dlE

mpelec

fselec
TX ε

ε
                                 (6) 

where TXE is the transmitted energy, elecE is the energy dissipated per bit in the transmitter or 

receiver circuit. fsε and mpε depend on the transmitter amplifier model. If the distance 

between the transmitter and the receiver is less than a threshold 0d , the free space model is 

used; otherwise, the multi-path model is used. 0d is usually calculated as: 

mp

fsd
ε
ε

=0
                                                           (7) 

On the other side, the energy consumption for the receiver to receive a l -bit long packet is 
calculated as follows: 

elecTX EllE ×=)(                                                    (8) 

4.3 The Proposed Algorithm 
The FIGWO defines rounds and each round is divided into cluster building phase and data 
transmission phase. 
Cluster Building Phase 
The CHs are important nodes in the clustering routing protocols because they collect, process, 
and transmit the packets originating from the CMs in the same cluster. The pseudocode for 
cluster building is presented in Table 1. 
 

Table 1. The pseudocode for clustering building phase 
Cluster building phase 

Input: 
N =number of alive nodes 
k =number of desired clusters, which equals to pN  
Output: 
A set of k clusters 
Steps: 
1.Initialization; 
2.Initialing cluster heads selection (presented in the following part); 
3.Each of the remaining nodes decides to join its nearest CH according to the Euclidean distance; 
4.Forming the initial clusters; 
5.For all initial clusters 
6.   If (The number of cluster member ≥ 3) 
7.       Implement FIGWO algorithm (described in the following part) to select the CH in each initial 
cluster; 
8.   Else 
9.       All the nodes are regarded as normal node; 
10.  End if 
11.End for 
12.The BS informs other nodes about the CHs change and their distance for data transmission. 
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The initial clusters are selected by the following rules. The set of alive sensor nodes is 
partitioned into k equal subsets according to the fitness value. In each set, the sensor node that 
is nearest to the middle point is taken as the initial cluster head. The node’s fitness value is 
calculated according to its distance to the BS, and its residual energy: 

( )







≤

>





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−
−

×−+×=
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i
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E

E
dd

dda
E
EaF                                  (9) 

where a  is a coefficient which indicates the contribution between rE  and d  in the fitness 
function F . rE  represents the residual energy a alive node, while iE  is the initial energy of 

a node; d  is the distance from the node to the BS; MAXd  and MINd  are the maximum and the 
minimum distance between a sensor node and the BS, respectively. 

The FIGWO algorithm is used to select CHs in initial clusters. Based on GWO and equation 
(9), the fitness value is calculated and used as the weights to determine the final position of the 
optimal solution which fully takes the node’s current state into consideration. Consequently, 
the new position of prey is computed as follows: 
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where αwF  , βwF  and δwF  represent the new weights of α  wolf, β  wolf and δ  wolf, 

respectively, which are calculated by equation (11). And αF , βF  and δF  are the best three 
fitness values. The details are showed in Table 2. 
 

Table 2. The pseudocode of FIGWO 
FIGWO 

1: while maxtt < do 
2:    for each node in initial cluster do 
3:       Compute the fitness value according to (9). 
4:       Select the leader node αX , βX , δX according to the best three fitness values. 
5:       Update the position of the prey using (10). 
6:    end for 
7: end while 
8: Select the node which has not been selected as CH in the latest p1 rounds. 

 
Data transmission phase 
The transmission phase mainly consists of two parts: the data transmission from the CMs to 
the CH and the data forwarding from the CH to the BS. To reduce the transmission distance, if 
a sensor node’s distance to the CH is shorter than the distance to the BS, then the sensor node 
sends its sensed information to its corresponding CH. Otherwise, the sensor node directly 
sends its sensed data to the BS. Then, the CH collects the data and forwards the received 
packets in an aggregated form to the BS periodically. It is a single hop communication 
between the CH and the BS. Here, the transmission distance, d , and the transmitted packet 
size, l , are two factors that influence the energy consumption of the packet transmission phase. 
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4.4 Comparison of clustering algorithms 
Table 3 presents a comparison between several selected clustering-based algorithms and the 
proposed FIGWO algorithm. As can be seen from the table, FIGWO algorithm combines the 
heuristic algorithm and the clustering-based algorithm, likewise, considers the residual energy 
and location information of the nodes. 
 

Table 3. Comparison of relevant algorithms 

Protocol Ref. Node type Inter-cluster 
topology 

Location 
awareness 

Energy 
awareness 

CH 
election 

Using 
heuristic 
algorithm 

LEACH Heinzelman 
et al. (2000) Homogeneous Direct Not 

required 
Not 

required Random No 

CARED
R 

Ma et al. 
(2013) Homogeneous Multi-hop Not 

required Required Deterministic No 

MLHP Al-Aboody 
et al. (2016) Heterogeneous Multi-hop Not 

required 
Not 

required Deterministic Yes 

P-SEP Naranjo et 
al. (2017) Heterogeneous Direct Required Required Deterministic No 

FIGWO / Homogeneous Direct Required Required Deterministic Yes 

5. Simulation results 
To evaluate the performance of the FIGWO algorithm, extensive simulations were carried out. 
Both the network model and the FIGWO algorithm were implemented using MATLAB. The 
results obtained for the FIGWO algorithm are compared to those obtained using the SEP and 
LEACH algorithms under the same circumstances. For this purpose, we also implemented 
those algorithms. The simulation was ran considering the following two scenarios: node 
numbers { }200,100=N ,sensing areas { }200200,100100 ××=M . The main simulation 
parameters are listed in Table 4. 
 

Table 4. Simulation Parameters 
Parameter value 
Network Size {1002, 2002}(m2 ) 
Number of Sensor nodes {100, 200} 
Portion of CHs p=0.1 
Packet Size l=4000 bits 
Data Aggregation Energy Cost EDA=50nJ/bit 
Transmitter/Receiver Eelec=50nJ/bit 
Transmitter Amplifier (free space) εfs=10pJ/(bit·m2) 
Transmitter Amplifier (multi-path space) εmp=0.0013pJ/(bit·m4) 
Coefficient of Fitness function a=0.2 

 
With respect to the algorithm performance, we use the following metrics for the evaluation 

purpose. 
(1) Residual energy: This includes the average residual energy of each node and the energy 

difference between the node with the most energy and the node with the least energy. 
(2) Stability period: The time duration from the network operation until the first node is 

dead. 
(3) The number of data packets received by BS. 
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5.1 Data transmission phase 
 

Fig. 1 shows the data transmission between all nodes at 1000th and the 1400th round, 
respectively. The CMs first send their sensed information to the corresponding CH, and the 
CH forwards the information to the BS after aggregating the received data. Blue lines are 
representing the communication between CMs and the corresponding CH, while red lines are 
indicating the transmission of data from CHs to the BS. As can be seen from the figure, some 
nodes do not send the sensed information to the corresponding CH; instead they send it 
directly to the base station. In this way, the transmission distance can be reduced and the CHs’ 
energy consumption can be reduced as well. In Fig. 1(b), some nodes die in the 1400th round, 
thus, there is no longer any transmission of information between them and other nodes. The 
transmission between the CH and the BS is always single hop communication. 

 

0 20 40 60 80 100
0

20

40

60

80

100

Sensing region X / m

Se
ns

in
g 

re
gi

on
 Y

 / 
m

     
0 20 40 60 80 100

0

20

40

60

80

100

Sensing region X / m

Se
ns

in
g 

re
gi

on
 Y

 / 
m

 
(a) round = 1000 (b) round = 1400 

Fig. 1. Data transmission between all nodes at different rounds 
 

5.2 Energy distribution 
 
Fig. 2 and Fig. 3 represent the energy distribution of all nodes at the 1000th and the 1400th 
round for the three different algorithms. The number near the nodes indicates the residual 
energy. It can be seen that the nodes’ residual energy of the FIGWO algorithm is generally 
greater than that of the other two algorithms at the same round. In Fig.2, at the 1000th round, 
the SEP algorithm has 1 dead node, and LEACH has 16 dead nodes, while the remaining 
energy of all nodes in FIGWO algorithm are all greater than 24%. In Fig.3, at the 1400th round, 
the nodes’ energy of SEP and LEACH algorithm are almost less than 5%, however, half of the 
nodes’ energy int the FIGWO algorithm still have more than 10% of the initial energy. Thus, 
benefit from the optimal selection of CH in each round, FIGWO maintains a higher residual 
energy. 



2652                                                           Xiaoqiang Zhao et al.: Energy-Efficient Routing Protocol for Wireless Sensor Networks 
Based on Improved Grey Wolf Optimizer 

0 20 40 60 80 100
0

20

40

60

80

100

35%

Sensing region X / m

Se
ns

in
g 

re
gi

on
 Y

 / 
m

24%

35%

39%

26%

41%

35%

30%

27%

25%

34%

26%
46%

40%

37%

29%

26%

23%

30%

37%

47%
30%

33%

37%30%

37%

39%

35%

39%

38%

40%

31%

27%

47%

41%

34%

38%

31%

40%

26%
26%

20%

28%

37%

27%

30%

20%

28%

49%

43%

29%

37%

45%

34%31%

40%

30%

37%

42%

29%

29%

39%

41%

41%

39%39%

28%

33%

30%

38%

38%
32%

41%

27%
36%

17%

28%

36%

19%

38%22%

38%

39%

39%

46%
39% 29%

46%

18%

28%

32%

26%

42%

26%

28%

39%

26%

25%

28%

32%

 
(a) FIGWO, round = 1000 
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(b) SEP, round = 1000                                    (c) LEACH, round = 1000 

Fig. 2. Energy distribution at 1000 rounds 
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(a) FIGWO, round = 1400 
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(b) SEP, round = 1400                                    (c) LEACH, round = 1400 

Fig. 3. Energy distribution at 1400 rounds 
 

5.3 Residual energy 
We also compared the residual energy in more details and for different rounds. This section 

consists of two parts. Fig. 4(a) and Fig. 4(b) show the average residual energy for each node, 
while Fig. 4(c) and Fig. 4(d) present the residual energy deviation between the node with the 
most energy and the node with the least energy. It is obvious that FIGWO achieves a higher 
average residual energy, which means the network can survive longer. Additionally, the 
smaller energy deviation illustrates that FIGWO can effectively reduce the energy deviation. 
There is no such a node that dies prematurely because of excessive energy consumption. 
Therefore, for the both scenarios, the energy consumption between the nodes using FIGWO is 
more balanced and due to additional energy savings, the network lifetime is increased in 
comparison to the other two algorithms. 
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 (N, M) = (100, 1002) (N, M) = (200, 2002) 
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Fig. 4. Residual energy with respect to the number of rounds 
 

5.4 Stability period 
Fig.5 shows the number of dead nodes for different rounds obtained from the simulation. The 
network stability period is one of the most important metric in WSNs. It is clearly that FIGWO 
has more surviving nodes over time than other algorithms, which also indicates that FIGWO 
has a longer stability period and is able to ensure a stable transmission of sensed data. Because 
of the more balanced distribution of clusters, FIGWO effectively improves the unbalanced 
network load and prolongs the stability period. 
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(a) Network stability period (b) Network stability period 

 (N, M) = (100, 1002) (N, M) = (200, 2002) 
Fig. 5. Stability period with respect to number of rounds 

 
In Table 5, the concrete values of death rates are shown. From the results, we can conclude 

that FIGWO has longer stability period for data transmission. It is evident from the table that 
the stability period is increased by 31.5% and 57.8% in scenario 1 and 32.7% and 48.5% in 
scenario 2 in comparison to SEP and LEACH, respectively. 
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Table 5. Comparison of network stability period; FND:= Round first nodes dies; HND:=Round half 
nodes dies; LND:= Round last node dies 

Algorithm 
(N, M) = (100, 1002) (N, M) = (200, 2002) 

FND HND LND FND HND LND 
FIGWO 1270 1510 2003 1172 1612 2536 

SEP 966 1305 1751 879 1150 1857 
LEACH 805 1210 1982 789 1093 1644 

 
5.5 The number of data packets received by BS 
For our evaluation, the number of data packets received by BS is another necessary metric. Fig. 
6 shows the data delivery ratio to BS. It is clearly that the throughput of the FIGWO algorithm 
is higher than that of LEACH and SEP. It can also be observed from the figure that the 
throughput is higher for 144.6% than in SEP and 177.2% than in LEACH. This is because 
some nodes directly send the sensed data to the BS instead of sending it to its CH first. This 
reduces the energy consumption while also increasing the total amount of data received by the 
BS. 
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 (a) Throughput, (N, M) = (100, 1002) (b) Throughput, (N, M) = (200, 2002) 

Fig. 6. The number of data packets received by BS with respect to number of rounds 

6. Conclusion 
In the paper, we proposed a new algorithm for wireless sensor networks (WSNs) with an 

improved performance in comparison to the standard Grey Wolf Optimization (GWO) 
algorithm. The algorithm is referred to as Fitness value based Improved Gray Wolf 
Optimization (FIGWO). It optimizes the method for selection of cluster heads (CHs) by 
computing a fitness value, thereby ensuring that the node in the cluster located near to the BS 
and having highest energy is more probably selected as a CH. At the same time, the 
transmission distance for each node is recalculated any time when new CH is selected. In this 
way, both the average transmission distance and the energy consumption are reduced. 
Consequently, the lifetime of the network can be prolonged. 

Our simulation results showed improved performance of the proposed algorithm when 
compared to the two classical algorithms SEP and LEACH. The performance is improved in 
terms of the residual energy, stability period, and the amount of data received by BS. The 
average residual energy of the proposed algorithm is significantly higher and the residual 
energy deviation is clearly lower than that of the above mentioned algorithms. In addition, 
FIGWO provides an improved stability period, namely an improvement of 31.5% with respect 
to SEP and 57.8% in comparison to LEACH, which increases the reliability of the data. The 
throughput of the network is also increased when compared with the two considered 



2656                                                           Xiaoqiang Zhao et al.: Energy-Efficient Routing Protocol for Wireless Sensor Networks 
Based on Improved Grey Wolf Optimizer 

algorithms. 
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