• 제목/요약/키워드: Improved PID Controller

검색결과 132건 처리시간 0.025초

개선된 PID 제어기를 이용한 Wind Turbine의 피치 제어 (Pitch Control for Wind Turbine System using Advanced PID Controller)

  • 전종현;권오신;김진성;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.831-836
    • /
    • 2011
  • The study described in this paper is aimed to maintain a constant output of wind turbine system via pitch control of wind turbine using Advanced PID(APID) controller. In order to improve dynamic response characteristic in terms of pitch angle and disturbance reject, the APID controller is developed. The structure of the APID is composed with derivative P controller and new type of integral control action. This new improved integral control has concept of error window and weight function concept. The performance of the APID control technique is compared with those of conventional ones via simulation. Simulation results show that the proposed method is effective and enhanced the dynamic performance of the system.

  • PDF

축소 모델을 이용한 하이브리드 스미스 퍼지 제어기 설계 (Design of Hybrid Smith-Predictor Fuzzy Controller Using Reduction Model)

  • 조준호;황형수
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.444-451
    • /
    • 2007
  • In this paper, we propose an improved reduction model and a reduction model-based hybrid smith-predictor fuzzy controller. The transient and steady-state responsed of the reduction model was evaluated. In tuning the controller, the parameters of PID and the factors fuzzy controllers were obtained from the reduced model and by using genetic algorithms, respectively. Simulation examples demonstrated a better performance of the proposed controller than conventional ones.

이동 로봇 군집 제어를 위한 퍼지 보상 PID제어기 (A Formation Control Scheme for Mobile Robots Using a Fuzzy Compensated PID Controller)

  • 배기현;최영규
    • 한국정보통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.26-34
    • /
    • 2015
  • 본 논문에서는 이동 로봇의 군집 제어를 위해 퍼지 보상된 PID 제어 시스템을 제안한다. 제어 시스템은 선도-추종기법에 기반한 기구학 제어기와 이동 로봇의 동역학적 영향을 고려한 동역학 제어기로 구성되어 있다. 이동 로봇의 대형 유지를 위해 동역학 제어기는 PID제어기로 구성되었다. 하지만 PID 제어기는 비선형 또는 환경 변화에 취약점을 가진다. 이러한 문제를 보완하기 위해 퍼지 보상기를 추가하였다. 마지막으로 개선된 성능을 보이기 위해 컴퓨터 시뮬레이션을 통해 제안된 제어기를 평가하였다.

직류 서보 전동기의 속응성 및 안정성 향상을 위한 개선된 뉴로-퍼지 제어기의 설계 (Design of Improved Neuro-Fuzzy Controller for the Development of Fast Response and Stability of DC Servo Motor)

  • 강영호;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권6호
    • /
    • pp.252-257
    • /
    • 2002
  • We designed a neuro-fuzzy controller to improve some problems that are happened when the DC servo motor is controlled by a PID controller or a fuzzy logic controller. Our model proposed in this paper has the stable and accurate responses, and shortened settling time. To prove the capability of the neuro-fuzzy controller designed in this paper, the proposed controller is applied to the speed control of DC servo motor. The results showed that the proposed controller did not produce the overshoot, which happens when PID controller is used, and also it did not produce the steady state error when FLC is used. And also, it reduced the settling time about 10%. In addition, we could by aware that our model was only about 60% of the value of current peak of PID controller.

CCD 폭 측정 시스템 및 퍼지 PID를 이용한 CFWC 제어기 설계 (CFWC Scheme for Width Control using CCD Measurement System and Fuzzy PID Controller in Hot Strip Mills)

  • 박철재
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.991-997
    • /
    • 2013
  • In this paper, we propose a CFWC (CCD and fuzzy PID based width control) scheme to obtain the desired delivery width margin of a vertical rolling mill in hot strip process. A WMS(width measurement system) is composed of two line scan cameras, an edge detection algorithm, a glitch filter, and so on. A dynamic model of the mill is derived from a gauge meter equation in order to design the fuzzy PID controller. The controller is a self-learning structure to select the PID gains from the error and error rate of the width margin. The effectiveness of the proposed CFWC is verified from simulation results under a width disturbance of the entry in the mill. Using a field test, we show that the performance of the width control is improved by the proposed control scheme.

개선된 모델 축소 방법에 의한 범용적 제어기 설계 (Design of Generalized Controller by Improved Model Reduction)

  • 조준호;황형수
    • 전자공학회논문지SC
    • /
    • 제44권5호
    • /
    • pp.1-10
    • /
    • 2007
  • 본 논문은 개선된 모델 축소 알고리즘을 이용하여 범용적 제어기 설계에 대해서 제안했다. 개선된 모델 축소 알고리즘은 모델의 과도상태와 정상상태 응답을 고려하여 주파수 영역에서 구하였다. 범용적 제어기 설계는 위상여유와 등 제동의 특성을 만족하는 PID 제어기와 2차 지연 모델에 대하여 촤적화 PID 제어기 설계에 대해서 제안 하였다. 시뮬레이션을 통하여 다양한 공정에 대하여 본 논문에서 제안한 방법을 적용하여, 모델축소 방법의 정확성 및 제어기 성능의 개선을 보였다.

A Model reference adaptive speed control of marine diesel engine by fusion of PID controller and fuzzy controller

  • Yoo, Heui-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권7호
    • /
    • pp.791-799
    • /
    • 2006
  • The aim of this paper is to design an adaptive speed control system of a marine diesel engine by fusion of hard computing based proportional integral derivative (PID) control and soft computing based fuzzy control methods. The model of a marine diesel engine is considered as a typical non oscillatory second order system. When its model and the actual marine diesel engine ate not matched, it is hard to control the speed of the marine diesel engine. Therefore, this paper proposes two methods in order to obtain the speed control characteristics of a marine diesel engine. One is an efficient method to determine the PID control parameters of the nominal model of a marine diesel engine. Second is a reference adaptive speed control method that uses a fuzzy controller and derivative operator for tracking the nominal model of the marine diesel engine. It was found that the proposed PID parameters adjustment method is better than the Ziegler & Nichols' method, and that a model reference adaptive control is superior to using only PID controller. The improved control method proposed here, could be applied to other systems when a model of a system does not match the actual system.

Design of Multi-loop PID Controllers Based on the Generalized IMC-PID Method with Mp Criterion

  • Vu Truong Nguyen Luan;Lee Jie-Tae;Lee Moon-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권2호
    • /
    • pp.212-217
    • /
    • 2007
  • A new method of designing multi-loop PID controllers is presented in this paper. By using the generalized IMC-PID method for multi-loop systems, the optimization problem involved in finding the PID parameters is efficiently simplified to find the optimum closed-loop time constant in a reduced search space. A weighted sum Mp criterion is proposed as a performance cost function to cope with both the performance and robustness of a multi-loop control system. Several illustrative examples are included to demonstrate the improved performance of the multi-loop PID controllers obtained by the proposed design method.

DIDF를 적용한 PID 제어기의 파라미터 설정법 - 불감시간을 가지는 불안정한 시스템의 경우 (Tuning PID Controllers for Unstable Systems with Dead Time based on Dual-Input Describing Function(DIDF) Method)

  • 최연욱
    • 전기학회논문지
    • /
    • 제63권4호
    • /
    • pp.509-518
    • /
    • 2014
  • Though various techniques have been studied as a way of adjusting parameters of PID controllers, no perfect method of determining parameters is available to date. Especially the deign of PID controller for unstable processes with dead time(UPWDT) is even more difficult due to various reasons. Generally the existing design procedures for UPWDT involve deriving formulas to meet gain and phase margin specifications, or using inner loop to stabilize UPWDT before applying PID controller. In this paper, the dual-input describing function(DIDF) method is proposed, by which the performance and robustness of the closed-loop system can be improved. The method is based on moving the critical point (-1+j0) of Nyquist stability to a new position arbitrarily selected on the complex plane. This can be done by determining appropriate coefficients of the DIDF. As a result, we can easily determine parameters of PID-type controller by using existing conventional tuning methods for stable or unstable systems. Simulation results are included to show the effectiveness of the proposed method.

발전기 드럼의 수위 지능 제어기 설계 (Water Level Intelligent Controller Design of Power Plant Drum)

  • 홍현문;이봉섭
    • 한국산업융합학회 논문집
    • /
    • 제10권4호
    • /
    • pp.271-274
    • /
    • 2007
  • In this paper, we propose a intelligent controller design method for the water level control of the power plant drum in the form of nonminimum phase system. The proposed method is based on T. Takagi and M. Sugeno's fuzzy model. And we illustrate the improved characteristics as the simulation results, comparing with the conventional the PID and LQ controller design method.

  • PDF