• Title/Summary/Keyword: Improved Genetic Algorithm

Search Result 341, Processing Time 0.023 seconds

Soft computing based mathematical models for improved prediction of rock brittleness index

  • Abiodun I. Lawal;Minju Kim;Sangki Kwon
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.279-289
    • /
    • 2023
  • Brittleness index (BI) is an important property of rocks because it is a good index to predict rockburst. Due to its importance, several empirical and soft computing (SC) models have been proposed in the literature based on the punch penetration test (PPT) results. These models are very important as there is no clear-cut experimental means for measuring BI asides the PPT which is very costly and time consuming to perform. This study used a novel Multivariate Adaptive regression spline (MARS), M5P, and white-box ANN to predict the BI of rocks using the available data in the literature for an improved BI prediction. The rock density, uniaxial compressive strength (σc) and tensile strength (σt) were used as the input parameters into the models while the BI was the targeted output. The models were implemented in the MATLAB software. The results of the proposed models were compared with those from existing multilinear regression, linear and nonlinear particle swarm optimization (PSO) and genetic algorithm (GA) based models using similar datasets. The coefficient of determination (R2), adjusted R2 (Adj R2), root-mean squared error (RMSE) and mean absolute percentage error (MAPE) were the indices used for the comparison. The outcomes of the comparison revealed that the proposed ANN and MARS models performed better than the other models with R2 and Adj R2 values above 0.9 and least error values while the M5P gave similar performance to those of the existing models. Weight partitioning method was also used to examine the percentage contribution of model predictors to the predicted BI and tensile strength was found to have the highest influence on the predicted BI.

PRINCIPAL COMPONENTS BASED SUPPORT VECTOR REGRESSION MODEL FOR ON-LINE INSTRUMENT CALIBRATION MONITORING IN NPPS

  • Seo, In-Yong;Ha, Bok-Nam;Lee, Sung-Woo;Shin, Chang-Hoon;Kim, Seong-Jun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.219-230
    • /
    • 2010
  • In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method.

Computational intelligence models for predicting the frictional resistance of driven pile foundations in cold regions

  • Shiguan Chen;Huimei Zhang;Kseniya I. Zykova;Hamed Gholizadeh Touchaei;Chao Yuan;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.217-232
    • /
    • 2023
  • Numerous studies have been performed on the behavior of pile foundations in cold regions. This study first attempted to employ artificial neural networks (ANN) to predict pile-bearing capacity focusing on pile data recorded primarily on cold regions. As the ANN technique has disadvantages such as finding global minima or slower convergence rates, this study in the second phase deals with the development of an ANN-based predictive model improved with an Elephant herding optimizer (EHO), Dragonfly Algorithm (DA), Genetic Algorithm (GA), and Evolution Strategy (ES) methods for predicting the piles' bearing capacity. The network inputs included the pile geometrical features, pile area (m2), pile length (m), internal friction angle along the pile body and pile tip (Ø°), and effective vertical stress. The MLP model pile's output was the ultimate bearing capacity. A sensitivity analysis was performed to determine the optimum parameters to select the best predictive model. A trial-and-error technique was also used to find the optimum network architecture and the number of hidden nodes. According to the results, there is a good consistency between the pile-bearing DA-MLP-predicted capacities and the measured bearing capacities. Based on the R2 and determination coefficient as 0.90364 and 0.8643 for testing and training datasets, respectively, it is suggested that the DA-MLP model can be effectively implemented with higher reliability, efficiency, and practicability to predict the bearing capacity of piles.

Estimation of Brittle Fracture Behavior of SA508 Carbon Steel by Considering Temperature Dependence of Damage Model (손상모델의 온도의존성을 고려한 SA508 탄소강의 취성파괴 평가)

  • Choi, Shin-Beom;Jeong, Jae-Uk;Choi, Jae-Boong;Chang, Yoon-Suk;Ko, Han-Ok;Kim, Min-Chul;Lee, Bong-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.513-521
    • /
    • 2012
  • The aim of this study was to determine the brittle fracture behavior of reactor pressure vessel steel by considering the temperature dependence of a damage model. A multi-island genetic algorithm was linked to a Weibull stress model, which is the model typically used for brittle fracture evaluation, to improve the calibration procedure. The improved calibration procedure and fracture toughness test data for SA508 carbon steel at the temperatures $-60^{\circ}C$, $-80^{\circ}C$, and $-100^{\circ}C$ were used to decide the damage parameters required for the brittle fracture evaluation. The model was found to show temperature dependence, similar to the case of NUREG/CR-6930. Finally, on the basis of the quantification of the difference between 2- and 3-parameter Weibull stress models, an engineering equation that can help obtain more realistic fracture behavior by using the simpler 2-parameter Weibull stress model was proposed.

Member Sizing Optimization for Seismic Design of the Inverted V-braced Steel Frames with Suspended Zipper Strut (Zipper를 가진 역V형 가새골조의 다목적 최적내진설계기법)

  • Oh, Byung-Kwan;Park, Hyo-Seon;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.555-562
    • /
    • 2016
  • Seismic design of braced frames that simultaneously considers economic issues and structural performance represents a rather complicated engineering problem, and therefore, a systematic and well-established methodology is needed. This study proposes a multi-objective seismic design method for an inverted V-braced frame with suspended zipper struts that uses the non-dominated sorting genetic algorithm-II(NSGA-II). The structural weight and the maximum inter-story drift ratio as the objective functions are simultaneously minimized to optimize the cost and seismic performance of the structure. To investigate which of strength- and performance-based design criteria for braced frames is the critical design condition, the constraint conditions on the two design methods are simultaneously considered (i.e. the constraint conditions based on the strength and plastic deformation of members). The linear static analysis method and the nonlinear static analysis method are adopted to check the strength- and plastic deformation-based design constraints, respectively. The proposed optimal method are applied to three- and six-story steel frame examples, and the solutions improved for the considered objective functions were found.

Optimization of Wind Turbine Pitch Controller by Neural Network Model Based on Latin Hypercube (라틴 하이퍼큐브 기반 신경망모델을 적용한 풍력발전기 피치제어기 최적화)

  • Lee, Kwangk-Ki;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1065-1071
    • /
    • 2012
  • Wind energy is becoming one of the most preferable alternatives to conventional sources of electric power that rely on fossil fuels. For stable electric power generation, constant rotating speed control of a wind turbine is performed through pitch control and stall control of the turbine blades. Recently, variable pitch control has been implemented in modern wind turbines to harvest more energy at variable wind speeds that are even lower than the rated one. Although wind turbine pitch controllers are currently optimized using a step response via the Ziegler-Nichols auto-tuning process, this approach does not satisfy the requirements of variable pitch control. In this study, the variable pitch controller was optimized by a genetic algorithm using a neural network model that was constructed by the Latin Hypercube sampling method to improve the Ziegler-Nichols auto-tuning process. The optimized solution shows that the root mean square error, rise time, and settle time are respectively improved by more than 7.64%, 15.8%, and 15.3% compared with the corresponding initial solutions obtained by the Ziegler-Nichols auto-tuning process.

Improved Method for Learning Context-Free Grammar using Tabular representation

  • Jung, Soon-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.43-51
    • /
    • 2022
  • In this paper, we suggest the method to improve the existing method leaning context-free grammar(CFG) using tabular representation(TBL) as a chromosome of genetic algorithm in grammatical inference and show the more efficient experimental result. We have two improvements. The first is to improve the formula to reflect the learning evaluation of positive and negative examples at the same time for the fitness function. The second is to classify partitions corresponding to TBLs generated from positive learning examples according to the size of the learning string, proceed with the evolution process by class, and adjust the composition ratio according to the success rate to apply the learning method linked to survival in the next generation. These improvements provide better efficiency than the existing method by solving the complexity and difficulty in the crossover and generalization steps between several individuals according to the size of the learning examples. We experiment with the languages proposed in the existing method, and the results show a rather fast generation rate that takes fewer generations to complete learning with the same success rate than the existing method. In the future, this method can be tried for extended CYK, and furthermore, it suggests the possibility of being applied to more complex parsing tables.

Development of Algorithm in Analysis of Single Trait Animal Model for Genetic Evaluation of Hanwoo (단형질 개체모형을 이용한 한우 육종가 추정프로그램 개발)

  • Koo, Yangmo;Kim, Jungil;Song, Chieun;Lee, Kihwan;Shin, Jaeyoung;Jang, Hyungi;Choi, Taejeong;Kim, Sidong;Park, Byoungho;Cho, Kwanghyun;Lee, Seungsoo;Choy, Yunho;Kim, Byeongwoo;Lee, Junggyu;Song, Hoon
    • Journal of Animal Science and Technology
    • /
    • v.55 no.5
    • /
    • pp.359-365
    • /
    • 2013
  • Estimate breeding value can be used as single trait animal model was developed directly using the Fortran language program. The program is based on data computed by using the indirect method repeatedly. The program develops a common algorithm and imprves efficiency. Algorithm efficiency was compared between the two programs. Estimated using the solution is easy to farm and brand the service, pedigree data base was associated with the development of an improved system. The existing program that uses the single trait animal model and the comparative analysis of efficiency is weak because the estimation of the solution and the conventional algorithm programmed through regular formulation involve many repetition; therefore, the newly developed algorithm was conducted to improve speed by reducing the repetition. Single trait animal model was used to analyze Gauss-Seidel iteration method, and the aforesaid two algorithms were compared thorough the mixed model equation which is used the most commonly in estimating the current breeding value by applying the procedures such as the preparation of information necessary for modelling, removal of duplicative data, verifying the parent information of based population in the pedigree data, and assigning sequential numbers, etc. The existing conventional algorithm is the method for reading and recording the data by utilizing the successive repetitive sentences, while new algorithm is the method for directly generating the left hand side for estimation based on effect. Two programs were developed to ensure the accurate evaluation. BLUPF90 and MTDFREML were compared using the estimated solution. In relation to the pearson and spearman correlation, the estimated breeding value correlation coefficients were highest among all traits over 99.5%. Depending on the breeding value of the high correlation in Model I and Model II, accurate evaluation can be found. The number of iteration to convergence was 2,568 in Model I and 1,038 in Model II. The speed of solving was 256.008 seconds in Model I and 235.729 seconds in Model II. Model II had a speed of approximately 10% more than Model I. Therefore, it is considered to be much more effective to analyze large data through the improved algorithm than the existing method. If the corresponding program is systemized and utilized for the consulting of farm and industrial services, it would make contribution to the early selection of individual, shorten the generation, and cultivation of superior groups, and help develop the Hanwoo industry further through the improvement of breeding value based enhancement, ultimately paving the way for the country to evolve into an advanced livestock country.

Study on Interaction of Planar Redundant Manipulator with Environment based on Intelligent Control (지능제어를 이용한 평면 여자유도 매니퓰레이터와 환경과의 상호작용에 관한 연구)

  • Yoo, Bong-Soo;Kim, Sin-Ho;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.388-397
    • /
    • 2009
  • There are many tasks which require robotic manipulators interaction with environment. It consists of three control problems, i.e., position control, impact control and force control. The position control means the way of reaching to the environment. The moment of touching to the environment yields the impact control problem and the force control is to maintain the desired force trajectory after the impact with the environment. These three control problems occur in sequence, so each control algorithm can be developed independently. Especially for redundant manipulators, each of these three control problems has been important independent research topic. For example, joint torque minimization and impulse minimization are typical techniques for such control problems. The three control problems are considered as a single task in this paper. The position control strategy is developed to improve the performance of the task, i.e., minimization of the individual joint torques and impulse. Therefore, initial conditions of the impact control problem are optimized at the previous position control algorithm. Such a control strategy yields improved result of the impact control. Similarly, the initial conditions for the force control problem are indirectly optimized by the previous position control and impact control strategies. The force control algorithm uses the individual joint torque minimization concept. It also minimizes the force disturbances. The simulation results show the proposed control strategy works well.

Performance Improvement of Feature Selection Methods based on Bio-Inspired Algorithms (생태계 모방 알고리즘 기반 특징 선택 방법의 성능 개선 방안)

  • Yun, Chul-Min;Yang, Ji-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.331-340
    • /
    • 2008
  • Feature Selection is one of methods to improve the classification accuracy of data in the field of machine learning. Many feature selection algorithms have been proposed and discussed for years. However, the problem of finding the optimal feature subset from full data still remains to be a difficult problem. Bio-inspired algorithms are well-known evolutionary algorithms based on the principles of behavior of organisms, and very useful methods to find the optimal solution in optimization problems. Bio-inspired algorithms are also used in the field of feature selection problems. So in this paper we proposed new improved bio-inspired algorithms for feature selection. We used well-known bio-inspired algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), to find the optimal subset of features that shows the best performance in classification accuracy. In addition, we modified the bio-inspired algorithms considering the prior importance (prior relevance) of each feature. We chose the mRMR method, which can measure the goodness of single feature, to set the prior importance of each feature. We modified the evolution operators of GA and PSO by using the prior importance of each feature. We verified the performance of the proposed methods by experiment with datasets. Feature selection methods using GA and PSO produced better performances in terms of the classification accuracy. The modified method with the prior importance demonstrated improved performances in terms of the evolution speed and the classification accuracy.