DOI QR코드

DOI QR Code

Member Sizing Optimization for Seismic Design of the Inverted V-braced Steel Frames with Suspended Zipper Strut

Zipper를 가진 역V형 가새골조의 다목적 최적내진설계기법

  • Oh, Byung-Kwan (Department of Architectural Engineering, Yonsei Univ.) ;
  • Park, Hyo-Seon (Department of Architectural Engineering, Yonsei Univ.) ;
  • Choi, Se-Woon (Department of Architecture, Catholic Univ. of Daegu)
  • Received : 2016.10.25
  • Accepted : 2016.11.29
  • Published : 2016.12.30

Abstract

Seismic design of braced frames that simultaneously considers economic issues and structural performance represents a rather complicated engineering problem, and therefore, a systematic and well-established methodology is needed. This study proposes a multi-objective seismic design method for an inverted V-braced frame with suspended zipper struts that uses the non-dominated sorting genetic algorithm-II(NSGA-II). The structural weight and the maximum inter-story drift ratio as the objective functions are simultaneously minimized to optimize the cost and seismic performance of the structure. To investigate which of strength- and performance-based design criteria for braced frames is the critical design condition, the constraint conditions on the two design methods are simultaneously considered (i.e. the constraint conditions based on the strength and plastic deformation of members). The linear static analysis method and the nonlinear static analysis method are adopted to check the strength- and plastic deformation-based design constraints, respectively. The proposed optimal method are applied to three- and six-story steel frame examples, and the solutions improved for the considered objective functions were found.

본 논문에서는 Nondominated sorting genetic algorithm-II(NSGA-II)를 이용한 Zipper를 가진 역V형 중심가새골조의 다목적 최적내진설계기법을 제시한다. 부재의 단면성능을 설계변수로 사용하는 제시된 최적화기법은 내진설계를 위해 부재의 강도조건, 구조물의 층간변위조건, 부재의 변형조건 등을 만족시키면서 구조물의 물량과 구조물의 최대 층간변위율을 동시에 최소화하는 문제로 정식화된다. 구조물의 물량과 최대 층간변위율을 최소화하는 이유는 구조물의 비용과 성능을 각각 최적화하기 위해서 이다. 선형 정적해석을 통해 구조물의 강도 및 층간변위 제약 조건을 검토하며, 비선형 정적해석을 통해 구조물의 변형 조건 및 내진성능을 평가한다. 제안된 기법을 검증하기 위해 3층과 6층 Zipper를 가진 역V형 중심가새골조 예제를 사용한다. 이를 통해 얻은 설계안을 초기 설계안과 비교분석하여 제안된 기법의 적용성을 확인한다.

Keywords

References

  1. Bruneau, M., Uang, C.M., Whittaker, A. (1997) Ductile Design of Steel Structures, McGraw-Hill, USA.
  2. Burns, S.A. (2002) Recent Advancements in Opmtimal Structural Design, ASCE.
  3. Choi, S.W., Yang, H.J., Park, H.S. (2010) Development of Optimal Seismic Design Model for Inverted V-type Special Concentrically Braced Frames, J. Comput. Struct. Eng. Inst. Korea, 23, pp.111-120.
  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002) A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Trans. Evolut. Comput., 6(2), pp.182-197. https://doi.org/10.1109/4235.996017
  5. FEMA 356 (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC.
  6. Fragiadakis, M., Lagaros, N.D., Papadrakakis, M. (2006a) Performance Based Multiobjective Optimum Design of Steel Structures Considering Life Cycle Cost, Struct. & Multidiscip. Optim., 32, pp.1-11. https://doi.org/10.1007/s00158-006-0009-y
  7. Fragiadakis, M., Lagaros, N.D., Papadrakakis, M. (2006b) Performance Based Earthquake Engineering using Structural Optimisation Tools, Int. J. Reliab. & Saf., 1, pp.59-76. https://doi.org/10.1504/IJRS.2006.010690
  8. Fragiadakis, M., Papadrakakis, M. (2008) Performance Based Optimum Seismic Design of Reinforced Concrete Structures, Earthq. Eng. & Struct. Dyn., 37, pp.825-844. https://doi.org/10.1002/eqe.786
  9. Ghobarah, A. (2001) Performance Based Design in Earthquake Engineering: State of Development, Eng. Struct., 23, pp.878-884. https://doi.org/10.1016/S0141-0296(01)00036-0
  10. Gupta, A., Krawinkler, H. (1999) Seismic Demands for Performance Evaluation of Steel Moment Resisting Rrame Structures, The John A. Blume Earthquake Engineering Center, Report No. 132, Dept. of Civil Engineering, Stanford University, Stanford, California.
  11. Khatib, I.F., Mahin, S.A., Pister, K.S. (1988) Seismic Behavior of Concentrically Braced Steel Frames, EERC Report, UCB/EERC-88/01, Berkeley.
  12. Liu, M., Burns, S.A., Wen, Y.K. (2005) Multiobjective Optimization for Performance Based Seismic Design of Steel Moment Frame Structures, Earthq. Eng. & Struct. Dyn., 34, pp.289-306. https://doi.org/10.1002/eqe.426
  13. Moghaddam, H., Hajirasouliha, I., Doostan, A. (2005) Optimum Seismic Design of Concentrically Braced Steel Frames: Concepts and Design Procedures, J. Construct. Steel Res., 61, pp.151-166. https://doi.org/10.1016/j.jcsr.2004.08.002
  14. OpenSees http://opensees.berkeley.edu/index.php
  15. Park, H.S., Choi, S.W. (2016) Genetic Algorithm Based Optimal Seismic Design Method for Inducing the Beam-Hinge Mechanism of Steel Moment Frames, J. Comput. Struct. Eng. Inst. Korea, 29, pp.253-260. https://doi.org/10.7734/COSEIK.2016.29.3.253
  16. Priestley, M.J.N. (2000) Performance Based Seismic Design, 12WCEE, San Diego.
  17. Sabelli, R. (2000) Research on Improving the Design and Analysis of Earthquake Resistant Steel Braced Frames, FEMA/EERI.
  18. Uriz, P. (2005) Towards Earthquake Resistant Design of Concentrically Braced Steel Frames, Ph.D. Dissertation, Civil and Environmental Engineering, University of California, Berkeley.
  19. Yang, C.S, Leon, R.T., DesRoches, R. (2008a) Design and Behavior of Zipper Braced Frames, Eng. Struct., 30, pp.1092-1100. https://doi.org/10.1016/j.engstruct.2007.06.010
  20. Yang, C.S, Leon, R.T., DesRoches, R. (2008b) Pushover Response of a Braced Frame with Suspended Zipper Struts, J. Struct. Eng., 134(10), pp.1619-1626. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:10(1619)
  21. Zou, X.K., Chan, C.M., Li, G., Wang, Q. (2007) Multiobjective Optimization for Performance Based Design of Reinforced Concrete Frames, J. Struct. Eng., 133(10), pp.1462-1474. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:10(1462)