DOI QR코드

DOI QR Code

Optimization of Wind Turbine Pitch Controller by Neural Network Model Based on Latin Hypercube

라틴 하이퍼큐브 기반 신경망모델을 적용한 풍력발전기 피치제어기 최적화

  • Received : 2012.04.19
  • Accepted : 2012.07.10
  • Published : 2012.09.01

Abstract

Wind energy is becoming one of the most preferable alternatives to conventional sources of electric power that rely on fossil fuels. For stable electric power generation, constant rotating speed control of a wind turbine is performed through pitch control and stall control of the turbine blades. Recently, variable pitch control has been implemented in modern wind turbines to harvest more energy at variable wind speeds that are even lower than the rated one. Although wind turbine pitch controllers are currently optimized using a step response via the Ziegler-Nichols auto-tuning process, this approach does not satisfy the requirements of variable pitch control. In this study, the variable pitch controller was optimized by a genetic algorithm using a neural network model that was constructed by the Latin Hypercube sampling method to improve the Ziegler-Nichols auto-tuning process. The optimized solution shows that the root mean square error, rise time, and settle time are respectively improved by more than 7.64%, 15.8%, and 15.3% compared with the corresponding initial solutions obtained by the Ziegler-Nichols auto-tuning process.

풍력발전기의 안정적인 전력생산은 정격풍속 이상에서 피치제어와 스톨제어와 같은 일정속도제어로 이루어지고 있다. 최근, 효율적인 전력생산을 위하여 정격풍속 이하의 변동풍속 조건에서 최대 출력을 얻기 위한 가변 속도제어가 적용되고 있는 추세이다. 기존의 피치제어기에서는 지글러-니콜스 계단응답법에 의한 제어기 최적화가 이루어지고 있으나, 가변 속도제어의 요구로 보다 정확한 최적화가 필요하게 되었다. 본 연구에서는 기존의 지글러-니콜스 계단응답법을 개선하기 위하여 라틴 하이퍼큐브 샘플링을 통한 신경망모델을 구축하고, 구축된 PID 제어 계수 신경망모델에 유전자 알고리즘을 적용하여 피치제어기를 최적화하였다. 유전자 알고리즘으로 구한 최적해가 지글러-니콜스 계단응답법의 초기해 보다 평균제곱근 오차가 13.4% 향상되었고, 응답특성을 나타내는 상승속도와 정착시간은 각각 15.8% 및 15.3%으로 개선되었다.

Keywords

References

  1. Kang, S. S., 1997, Pitch Control Simulation of Wind Generator System, Master's Thesis, Cheju National University.
  2. Fernando, D. B., Hernan, D. B. and Ricardo, J. M., 2007, Wind Turbine Control Systems, Springer-Verlag, London.
  3. Aidan O., 2009, Handbook of PI and PID Controller Tuning Rules, Imperial College Press, London.
  4. Xue, D., Chen Y. Q. and Atherton, D. P., 2007, Linear Feedback Control - Analysis and Design with MATLAB, SIAM, Philadelphia
  5. 2012, JMP 10 Design of Experiments Guide, SAS Institute Inc.
  6. Arbib, M. A., 2003, The Handbook of Brain Theory and Neural Networks, THE MIT PRESS.
  7. Jonkman, J. M., 2007, Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine, NREL/TP-500-41958, National Renewable Energy Laboratory
  8. Furat, A. R. A. and Mohammed, A. A., 2010, "Simulation of Wind-Turbine Speed Control by MATLAB," International Journal of Computer and Electrical Engineering, Vol. 2, No. 5, pp. 1793-8163.
  9. Hand, M. M., 1999, "Variable-Speed Wind Turbine Controller Systematic Design Methodology: A Comparison of Non-Linear and Linear Model-Based Designs," NREL/TP-500-25540, National Renewable Energy Laboratory.
  10. Aho, J., 2010, Advanced Control of Large Scale Wind Turbines, Master's Thesis, University of New Hampshire.
  11. McKay, M. D., Beckman, R. J. and Conover, W. J., 1979, "A Comparison of Three Methods for Selecting Values of Input Variables in The Analysis of Output from a Computer Code," Technometrics, Vol. 21, pp. 239-245.
  12. Sacks, J., Welch, W., Mitchell, T. and Wynn, H., 1989, "Design and Analysis of Computer Experiments," Statistical Science, Vol. 4, pp. 409-435. https://doi.org/10.1214/ss/1177012413
  13. Goldburg, D. E., 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing Co. Inc., N.Y.
  14. Jin, K. I., 2001, A Study on the Optimization Method of Architectural Design Using Genetic Algorithm, Ph.D's Thesis, Yonsei University.
  15. Henriksen, 2007, Model Predictive Control of a Wind Turbine, Master's Degree, Technical University of Denmark.

Cited by

  1. Shape optimization for light weight design of direct-drive generator in large-scale wind turbine vol.15, pp.10, 2014, https://doi.org/10.1007/s12541-014-0569-5
  2. Optimization process for concept design of tactical missiles by using pareto front and TOPSIS vol.15, pp.7, 2014, https://doi.org/10.1007/s12541-014-0478-7