• Title/Summary/Keyword: Improved Cell Performance

Search Result 579, Processing Time 0.031 seconds

Analysis for Performance Deviation of Individual Cells in a Multi-Cell Test System for Rapid-Screening of Electrode Materials in PEMFCs (고분자전해질 연료전지용 전극물질의 빠른 스크리닝을 위한 멀티셀 테스트 시스템에서 개별셀의 성능편차에 대한 분석)

  • Zhang, Yan;Lee, Ji-Jung;Park, Gyung-Se;Lee, Hong-Ki;Shim, Joong-Pyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.842-851
    • /
    • 2011
  • A multi-cell test system with 25 independent cells is used to test different electrode materials simultaneously for polymer electrolyte membrane fuel cells (PEMFCs). Twenty-five segmented membrane electrode assemblies (MEAs) having the same or different Pt-loading are prepared to analyze the performance deviation of cells in the multi-cell test system. Improvements in the multi-cell test system are made by ensuring that the system performs voltage sensing for the cells individually and inserting optimum gaskets between the MEAs and the graphite plates. The cell performances are improved and their deviations are significantly decreased by these modifications. The performance deviations changed according to various cell configurations because the operating conditions of the cells, such as the gas flow and concentration, differed. This cell system can be used to test multiple electrodes simultaneously because it shows relatively uniform performance under the same conditions as well as linear correlation with various catalyst loadings.

Engine Room Layout Design Optimization of Fuel Cell Vehicle Using CFD Technique (CFD를 이용한 연료전지 차량 레이아웃 최적화)

  • Kim, Jung-Ill;Jeon, Wan-Ho;Cho, Jang-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.99-106
    • /
    • 2011
  • This paper deals with engine room layout design optimization of fuel cell electric vehicle (FCEV), which has been proposed as a potential alternative to fossil fuel depletion. Investing the great R&D efforts, the global vehicle manufacturers, especially Honda motor corporate, have shown not prototype vehicle but commercial vehicle using fuel cell in the market recently. In this paper, we analyze cooling performance and flow characteristic in the engine room of newly FCEV, in addition we suggest the optimization process for engine room layout design optimization. The two radiators in the vehicle for fuel cell stack and electronic components cooling have been analyzed and their performance are obtained in terms of cooling performance ratio (CPR). The value of CPR should always be less than one and based on criteria, we have achieved the optimum cooling performance of radiators for stack and electronic components. Aerodynamic performance is evaluated in terms of drag coefficient, improved through underbody modification using air devices.

Performance Enhancement by Adaptation of Long Term Chronoamperometry in Direct Formic Acid Fuel Cell using Palladium Anode Catalyst

  • Kwon, Yong-Chai;Baik, S.M.;Han, Jong-Hee;Kim, Jin-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2539-2545
    • /
    • 2012
  • In the present study, we suggest a new way to reactivate performance of direct formic acid fuel cell (DFAFC) and explain its mechanism by employing electrochemical analyses like chronoamperometry (CA) and cyclic voltammogram (CV). For the evaluation of DFAFC performance, palladium (Pd) and platinum (Pt) are used as anode and cathode catalysts, respectively, and are applied to a Nafion membrane by catalyst-coated membrane spraying. After long DFAFC operation performed at 0.2 and 0.4 V and then CV test, DFAFC performance is better than its initial performance. It is attributed to dissolution of anode Pd into $Pd^{2+}$. By characterizations like TEM, Z-potential, CV and electrochemical impedance spectroscopy, it is evaluated that such dissolved $Pd^{2+}$ ions lead to (1) increase in the electrochemically active surface by reduction in Pd particle size and its improved redistribution and (2) increment in the total oxidation charge by fast reaction rate of the Pd dissolution reaction.

Study on Optimization of Operating Conditions for High Temperature PEM Fuel Cells Using Design of Experiments (실험계획법을 이용한 고온 고분자 전해질 막 연료전지의 운전조건 최적화 연구)

  • Kim, Jintae;Kim, Minjin;Sohn, Youngjun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.50-60
    • /
    • 2013
  • High temperature proton exchange membrane fuel cells (PEMFCs) using phosphoric acid (PA) doped polybenzimidazole (PBI) membranes have been concentrated as one of solutions to the limits with traditional low temperature PEMFCs. However, the amount of reported experimental data is not enough to catch the operational characteristics correlated with cell performance and durability. In this study, design of experiments (DOE) based operational optimization method for high temperature PEMFCs has been proposed. Response surface method (RSM) is very useful to effectively analyze target system's characteristics and to optimize operating conditions for a short time. Thus RSM using central composite design (CCD) as one of methodologies for design of experiments (DOE) was adopted. For this work, the statistic models which predict the performance and degradation rate with respect to the operating conditions have been developed. The developed performance and degradation models exhibit a good agreement with experimental data. Compared to the existing arbitrary operation, the expected cell lifetime and average cell performance during whole operation could be improved by optimizing operating conditions. Furthermore, the proposed optimization method could find different new optimal solutions for operating conditions if the target lifetime of the fuel cell system is changed. It is expected that the proposed method is very useful to find optimal operating conditions and enhance performance and durability for many other types of fuel cell systems.

A Study on the Performance Digital Beamforming using Antenna Error Correction and Modified Optimum Weight for Improved Signal Estimation (향상된 신호 추정을 위한 안테나 오차 보정 과 수정된 최적 가중치를 이용한 디지털 빔 형성 성능 분석에 관한 연구)

  • Cho, Sung Kuk;Lee, Jun Dong;Yang, Gill Mo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.63-70
    • /
    • 2014
  • Method a target estimation in spatial are mobile wireless communication using network cell and GPS. It have much error that mobile wireless communication depend on cell size. GPS method can't find a target in shadow and inner area. In this paper, we estimate a target as direction of arrival method using adaptive array antenna system. Adaptive array antenna system can obtain desired signal to remove other signal This paper studied digital beamforming method in order to estimation a target. Proposed method is modified optimum weight and antenna error correction to estimation an optimal receive signal. Digital beamforming method decided a signal phase and amplitude from received signal on array antenna element. But if it is not to do error correction of received signal, system performance have decreased. Firstly, we proposed modified optimum weight in order to finding desired target. Secondly, we are error correction of antenna incident signals by optimal weight before digital beamforming method. Thirdly, throughly simulation, we showed that system performance of proposed method compare proposal method with general method. It have improved resolution of estimation target to good performance more proposed method than general method.

Effects of the Operating Conditions on the Performance of Direct Methanol Fuel Cells (직접메탄올 연료전지의 운전 조건이 성능에 미치는 영향)

  • Han, Chang-Hwa;Kim, Nam-Hoon;Lee, Joong-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.292-298
    • /
    • 2011
  • This study examines the effects of the ambient temperature (AT), methanol feeding temperature (MFT), methanol concentration (MC) and methanol flow rate (MFR) on the performance and cell temperature (CT) of a 5-stacked direct methanol fuel cell (DMFC). The AT, MFT, MC, and MFR are varied from $-10^{\circ}C$ to $+40^{\circ}C$, $50^{\circ}C$ to $90^{\circ}C$, 0.5M to 3.0M and 11.7 mL $min^{-1}$ to 46.8 mL $min^{-1}$, respectively. The performance of the DMFC under various operating conditions is analyzed from the I-V polarization curve, and the methanol crossover is estimated by gas chromatography (GC). The performance of the DMFC improves significantly with increasing AT. The open circuit voltage (OCV) decreases with increasing MC due to the enhanced likelihood of methanol crossover. The cell performance is improved significantly when the MFR is increased from 11.7 mL $min^{-1}$ to 28.08 mL $min^{-1}$. The change in cell performance is marginal with further increases in MFR. The CT increases significantly with increasing AT. The effect of the MFT and MFR is moderate, and the effect of MC is marginal on the CT of the DMFC.

Efficiency Improvement Research in Proton Exchange Membrane Fuel Cell (고분자전해질형 연료전지의 효율향상에 대한 연구)

  • Jang, Haer-Yong;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.149-154
    • /
    • 2005
  • Fuel cell performance evaluation logic was developed using G-language (LabVIEW) to measure performance stability. Degree of stability and reliability of performance data were improved with averaged value and standard deviation method. Water injection system was introduced and the performance using this method was comparable to that of conventional humidification method. Water injection system has advantage of lowering operation energy consumption, reducing the number of parts needed in humidification, therefore increasing efficiency of fuel cell system. Fuel cell performance was decreased in case of low temperature operation such as sub freezing condition. Air purge method was tested to reduce the water content in cell fixture before sub freezing condition. The performance degradation due to low temperature operation was minimized by air purge method in medium size cell fixture ($25cm^2$) case.

Effect of Porous Flow Field on PEMFC Performance with Dead Ended Anode System (Dead ended anode 시스템에서 다공성 유로가 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.646-652
    • /
    • 2022
  • The dead-end anode (DEA) system is a method that closes the anode outlet and supplies fuel by pressure. The DEA method could improve fuel usage and power efficiency through system simplification. However, flooding occurs due to water and nitrogen back diffusion from the cathode to the anode during the DEA operation. Flooding is a cause of decreased fuel cell performance and electrode degradation. Therefore, tthe structure and components of polymer electrolyte membrane fuel cell (PEMFC) should be optimized to prevent anode flooding during DEA operation. In this study, the effect of a porous flow field with metal foam on fuel cell performance and fuel efficiency improvement was investigated in the DEA system. As a result, fuel cell performance and purge interval were improved by effective water management with a porous flow field at the cathode, and it was confirmed that cathode flow field structure affects water back-diffusion. On the other hand, the effect of the porous flow field at the anode on fuel cell performance was insignificant. Purge interval was affected by metal foam properties and shown stable performance with large cell size metal foam in the DEA system.

Performance Comparison of Two Ellipse Fitting-Based Cell Separation Algorithms

  • Cho, Migyung
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.215-219
    • /
    • 2015
  • Cells in a culture process transform with time and produce many overlapping cells in their vicinity. We are interested in a separation algorithm for images of overlapping cells taken using a fluorescence optical microscope system during a cell culture process. In this study, all cells are assumed to have an ellipse-like shape. For an ellipse fitting-based method, an improved least squares method is used by decomposing the design matrix into quadratic and linear parts for the separation of overlapping cells. Through various experiments, the improved least squares method (numerically stable direct least squares fitting [NSDLSF]) is compared with the conventional least squares method (direct least squares fitting [DLSF]). The results reveal that NSDLSF has a successful separation ratio with an average accuracy of 95% for two overlapping cells, an average accuracy of 91% for three overlapping cells, and about 82% accuracy for four overlapping cells.

A Study on the Improvement of the Efficiency of Dye-sensitized Solar Cell using the Laser Scribing and the Grid Electrode (레이저 식각 및 그리드 전극을 적용한 염료감응형 태양전지의 효율 향상 연구)

  • Seo, Hyun-Woong;Son, Min-Kyu;Lee, Kyung-Jun;Kim, Jeong-Hoon;Hong, Ji-Tae;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1802-1806
    • /
    • 2008
  • Dye-sensitized solar cell (DSC) based on some advantages such as transparency, cheap materials and anti-sensibility for an anlge of incidence has been expected to capture most of solar cell market in the near future. To practical use of DSC, researches on high efficiency as well as upscaling are necessary. In this study, we tried to insert the grid electrode in DSC and scribe transparent conducting oxide (TCO) using Nd:YAG laser. The grid electrode makes the electron movement improved and diffusional movement minimized. Consequently, the efficiency of DSC was increased by reducing electron loss and the surface resistance of TCO. The grid electrode was made using Ag target by radio frequency sputtering. And the scribed surface was confirmed by taking a scanning electron microscopy photos. As the result, grid cell had improved photocurrent and fill factor as compared with the conventional cell. And the efficiency was increased about 1% by enhanced photocurrent and fill factor.