• Title/Summary/Keyword: Improved Cell Performance

Search Result 582, Processing Time 0.033 seconds

Effect of LiCoO2-Coated Cathode on Performance of Molten Carbonate Fuel Cell

  • Kim, Dohyeong;Kim, Hyung Tae;Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam;Woo, Ju Young;Han, Haksoo
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.112-119
    • /
    • 2022
  • Molten carbonate fuel cells (MCFCs) are environmentally friendly, large-capacity power generation devices operated at approximately 650℃. If MCFCs are to be commercialized by improving their competitiveness, their cell life should be increased by operating them at lower temperatures. However, a decrease in the operating temperature causes a reduction in the cell performance because of the reduction in the electrochemical reaction rate. The cell performance can be improved by introducing a coating on the cathode of the cell. A coating with a high surface area expands the triple phase boundaries (TPBs) where the gas and electrolyte meet on the electrode surface. And the expansion of TPBs enhances the oxygen reduction reaction of the cathode. Therefore, the cell performance can be improved by increasing the reaction area, which can be achieved by coating nanosized LiCoO2 particles on the cathode. However, although a coating improves the cell performance, a thick coating makes gas difficult to diffuse into the pore of the coating and thus reduces the cell performance. In addition, LiCoO2-coated cathode cell exhibits stable cell performance because the coating layer maintains a uniform thickness under MCFC operating conditions. Therefore, the performance and stability of MCFCs can be improved by applying a LiCoO2 coating with an appropriate thickness on the cathode.

Dynamic Fractional Frequency Reuse based on an Improved Water-Filling for Network MIMO

  • M.K, Noor Shahida;Nordin, Rosdiadee;Ismail, Mahamod
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2124-2143
    • /
    • 2016
  • In Long Term Evolution-Advanced (LTE-A) systems, Inter-cell Interference (ICI) is a prominent limiting factor that affects the performance of the systems, especially at the cell edges. Based on the literature, Fractional Frequency Reuse (FFR) methods are known as efficient interference management techniques. In this report, the proposed Dynamic Fractional Frequency Reuse (DFFR) technique improved the capacity and cell edge coverage performance by 70% compared to the Fractional Frequency Reuse (FFR) technique. In this study, an improved power allocation method was adopted into the DFFR technique to reach the goal of not only reducing the ICI mitigation at the cell edges, but also improving the overall capacity of the LTE-A systems. Hence, an improved water-filling algorithm was proposed, and its performance was compared with that of other methods that were considered. Through the simulation results and comparisons with other frequency reuse techniques, it was shown that the proposed method significantly improved the performance of the cell edge throughput by 42%, the capacity by 75%, and the coverage by 80%. Based on the analysis and numerical expressions, it was concluded that the proposed DFFR method provides significant performance improvements, especially for cell edge users.

Improved SIR-based call admission control for DS-CDMA cellular system (DS-CDMA 셀룰라 시스템을 위한 SIR기반의 개선된 호 수락 제어)

  • 김호준;박병훈;이진호;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.957-966
    • /
    • 1998
  • In this paper an imrpoved Signal-to-Interference ratio(SIR)-based call admission control(CAC) algorithm for DS-CDMA cellular system is proposed and its performance is analyzed. This algorithm uses Residual-Capacity defined asthe additional number of initial calls that a base station can accept such that system-wide outage probability will guaranteed to remain below a certain level. the residual capcity at each cell is calculated according to the reverse-link SIR measured not only at the home cell but also the adjacent cells. Then the adjacent cell interference-coupling coefficient .betha. is used. In this work we propose an improved algorithm that .betha. varies according to the traffic load of the home cell. The influence of traffic condition on system performance, namely blocking probability and outage probability, is then examined via simulation. The performance of the improved algorithm is evaluated both under homogeneous and hot spot traffic loads. The results show that the improved algorithm outperforms conventional algorithms under all load values. Under over-load situation, especially, the improved algorithm gives almost constant outage performance the QoS(quality of service) can be guranted.

  • PDF

Numerical Design of Auto-Catalyst Substrate for Improved Conversion Performance Using Radially Variable Cell Density (변환효율 향상을 위한 횡방향 가변 셀밀도법을 사용한 자동차용 촉매변환기의 수치적 설계)

  • Jeong, Su-Jin;Kim, U-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1596-1607
    • /
    • 2000
  • The optimal design of auto-catalyst needs a good compromise between the pressure drop and flow uniformity in the substrate. One of the effective methods to achieve this goal is to use the concept of radially variable cell density. But this method has not been examined its usefulness in terms of chemical behavior and conversion performance. In this work, two-dimensional performance prediction of catalyst coupled with turbulent reacting flow simulation has been used to evaluated the benefits of this method n the flow uniformity and conversion efficiency. The results showed that two cell combination of 93cpsc and 62 cpsc was the most effective for improved pressure drop and conversion efficiency due to balanced space velocity and efficient usage of geometric surface area of channels. It was also found that large temperature difference between the bricks in case that the edge of the frontal face of brick has too much lower cell density(less than 67% of cell density of the center of the brick). This study has also demonstrated that the present computational results show the better prediction accuracy in terms of CO, HC and NO conversion efficiencies compared to those of conventional 1-D adiabatic model by comparison with experimental results.

Frequency Reuse and Sub-cell Coverage Determination Scheme for Improved Throughput in OFDMA-based Relay Systems (OFDMA 기반 Relay 시스템에서 Throughput 개선을 위한 자원 재사용과 커버리지 설정기법)

  • Hyun, Myung-Reun;Choi, Ho-Young;Hong, Dae-Hyoung;Lim, Jae-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.414-420
    • /
    • 2009
  • In this paper, we investigate throughput performance of OFDMA-based relay systems according to the "sub-cell coverage configuration" of the base station (RS) and the relay station (RS). RS is exploited for improved quality of the received signal with a tradeoff of additional radio resource consumption which may result in degradation of the throughput performance of the system. Therefore, "radio resource reuse" may be necessary for high performance in relay systems. However, it also causes system performance degradation since resource reuse between RSs incurs channel interference. Therefore, effective resource reuse also should be considered for "high throughput coverage configuration" when relays are employed. We relate the resource reuse patterns of neighboring RSs to sub-cell coverage configuration. We determine the sub-cell coverage of the system depending on the ratio of received signal-interference-noise-ratio (SINR) of the mobile station (MS) from the BS and RS, respectively. Simulations illustrate the throughput performance as the function of SINR ratio, and it has different optimal point depending on the resource reuse patterns. Therefore, the "resource reuse pattern" and the "effective sub-cell coverage configuration" should be considered together for the high throughput performance of the relay system.

Small Cell Communication Analysis based on Machine Learning in 5G Mobile Communication

  • Kim, Yoon-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.14 no.2
    • /
    • pp.50-56
    • /
    • 2021
  • Due to the recent increase in the mobile streaming market, mobile traffic is increasing exponentially. IMT-2020, named as the next generation mobile communication standard by ITU, is called the 5th generation mobile communication (5G), and is a technology that satisfies the data traffic capacity, low latency, high energy efficiency, and economic efficiency compared to the existing LTE (Long Term Evolution) system. 5G implements this technology by utilizing a high frequency band, but there is a problem of path loss due to the use of a high frequency band, which is greatly affected by system performance. In this paper, small cell technology was presented as a solution to the high frequency utilization of 5G mobile communication system, and furthermore, the system performance was improved by applying machine learning technology to macro communication and small cell communication method decision. It was found that the system performance was improved due to the technical application and the application of machine learning techniques.

Performance Test of Supercharger for Vehicle using Solar Cell (태양광발전 방식의 자동차용 과급 장치의 성능 평가)

  • Ko, Kwang-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.942-948
    • /
    • 2011
  • The performance of a supercharger for vehicle using solar cell attached on the exterior of a car, an auxiliary battery, and an air compressor was evaluated in this study. This supercharger is composed of a solar cell of 40W, a battery of 60 Ah, an air compressor of 17 A, 8 $kgf/cm^2$ and an air tank of 8L. It takes about 6 days to charge the battery with the solar cell and the high pressure air of 8L can be supplied about 70 times to engine intake with this battery. The intake pressure increased by about 20~40% with this supercharger. The vehicle power and accelerating performance are enhanced by 87% and 50% each in the low speed range. But the performance improved little in the high speed range because of the rather constant flow rate of air supplied by this type of supercharger.

CELL SEARCH AND PERFORMANCE ANALYSIS OF W-CDMA SYSTEM IN REALISTIC MULTIPATH CHANNEL ENVIRONMENTS (광대역 다중경로 채널환경에서 W-CDMA 시스템의 셀 탐색과 성능분석)

  • 박대식;김병학;우연식;김철성
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.591-594
    • /
    • 2001
  • In the W-CDMA system, cell search is one of the imporant functions of the mobile station searching for a cell and achieving spreading code and time synchronization to its downlink scrembling code. For the methods of cell search to optimize codes, three stages are considered: 1) slot synchronization, 2) frame synchronization, and 3) scrambling code identification. Channels for cell search are Primary Synchronization Channel (P-SCH), Secondary Synchronization Channel(S-SCH), and Common Pilot Channel (CPICH). In this paper, cell search is analyzed based on simulation. Rake receiver provides improvement of Performance as an increase of bandwidth because there are more available multipaths. In this paper, the performance of W-CDMA system employing RAKE receiver is evaluated by computer simulation over the types of ITU_R wideband channel model and spreading rate. The result shows that the performance of CDMA adapting RAKE receiver is improved by the increase of multipath components in equal level of the received power.

  • PDF

A study of Polarization Modulator to Single-cell type in Polarized Glasses 3D Display System Using Binocular Parallax

  • Kong, Kyung-Bae;Kwon, Jung-Jang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.71-78
    • /
    • 2019
  • Most 3D displays that are currently in the market adopt the binocular disparity method creating a different image for the left and right eye for a 3 dimensional effect. However, commercialized 3D image output devices lack in performance making it uncomfortable for the viewer and restrict the viewer to certain positions. In this paper, we propose a single-cell polarized lens type stereoscopic system which has a smaller viewing angle and reduced crosstalk, with improved light penetration compared to existing double-cell structures; and analyzed the single-cell polarized lens type stereoscopic system properties, and conducted an effect analysis of performance improvement compared to the dual-cell type. Results showed that the single-cell type had a 25% improved performance, and the 3D crosstalk index which is an important index for quality characteristics of stereoscopic systems, increased over about 37%, compared to the dual-cell type.

A Study on the Performance of the Polymer Electrolyte Membrane Fuel Cell Using the Metal Bipolar Plates (금속분리판을 이용한 고분자전해질 연료전지의 성능에 관한 연구)

  • Jeon, U.-S.;Cho, E.A.;Ha, H.-Y.;Hong, S.-A.;Oh, I.-H.
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.4
    • /
    • pp.313-320
    • /
    • 2002
  • The characteristics of the AISI bipolar plates have been investigated to replace the expensive graphite bipolar plates. It was found from the contact resistance evaluation of graphites, composites, and AISI that the contact resistance of AISI was the lowest, but it could approach to that of composites at higher compression forces. The single cell operation using the AISI bipolar plates revealed that the lower performance of the AISI single cell compared to the graphite one was due to not only the higher contact resistance but the flooding effect caused by high wettability of AISI. The performance of the AISI single cell could be improved if the channels were modified appropriately. The large size AISI single cell was operated to investigated the size effect on the performance.