• Title/Summary/Keyword: Important Performance Analysis

Search Result 5,253, Processing Time 0.039 seconds

FAMILY DYNAMICS OF INCEST PERCEIVED BY ADOLESECENTS (청소년이 지각한 근친상간의 가족역동)

  • Kim, Hun-Soo;Shin, Hwa-Sik
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.6 no.1
    • /
    • pp.56-64
    • /
    • 1995
  • Family is a primary unit of the major socialization processing for children. Parents among the family members are one of the most important figures from whom the child and adolescent acquire a wide variety of behavior patterns, attitudes, values and norms. An organization of family members product family structural functioning. Abnormal family structure is one of the most important reference models in the learning of antisocial patterns of behavior. Therefore incest and child sexual abuse including spouse abuse, elderly abuse, and neglect occurs in the abnormal family structural setting. In particular, incest, a specific form of sexual abuse, was once thought to be a phenomenon of great rarity, but our clinical experiences, especially over the past decade, have made us aware that incest and child sexual abuse is not rare case and on the increasing trend. Therefore, the aim of this study was to determine the family problem and dynamics of incest family, and character pattern of post-incest adolescent victim in Korea. A total of 1,838 adolescents from middle and high school(1,237) and juvenile correctional institute(601) were studied, sampled from Korean student population and adolescent delinquent population confined in juvenile correctional institutes, using proportional stratified random sampling method. The subjects' ages ranged from 12 to 21 years. Data were collected through questionnaire survey. Data analysis was done by IBM PC of Behavior Science Center at the Korea university, using SAS program. Statistical methods employed were Chi-square, principal component analysis and t-test etc. The results of this study were as follows ; 1) Of 1,071 subjects, 40(3.7%) reported incest experiences(sibling incest : 1.6% ; another type of incest : 2.1%) in their family setting. 2) The character pattern of post-incest adolescent victim was more socially maladjusted, immature, impulsive, rigid, anxious and dependent than non-incest adolescent. Also they showed some problem in academic performance and their assertiveness. 3) The other family members of incest family revealed more psychological and behavioral problem such as depression, alcoholism, psychotic disorder and criminal act than the non-incest family, even though there is no evidence of the context between them. 4) The family dynamics of incest family tended to be dysfunctional trend, as compared with non-incest family. It showed that the psychological instability of family member, parental rejection toward their children, coldness and indifference among family member and marital discordance between the parents had significant correlation with incest.

  • PDF

An Empirical Study on the Influencing Factors for Big Data Intented Adoption: Focusing on the Strategic Value Recognition and TOE Framework (빅데이터 도입의도에 미치는 영향요인에 관한 연구: 전략적 가치인식과 TOE(Technology Organizational Environment) Framework을 중심으로)

  • Ka, Hoi-Kwang;Kim, Jin-soo
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.443-472
    • /
    • 2014
  • To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.

An Evaluation of Polycross Progenies for Leaf and Plant Characteristics in Winter Active Tall Fescue (Festuca arundinacea Schreb.) - I. Summer Forage Phase (동기생육형(冬期生育型) 톨페스큐의 엽(葉)및 지상부형질(地上部形質)에 관(關)한 다교배(多交配) 후대검정(後代檢定))

  • Kim, Dal Ung
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.2
    • /
    • pp.357-373
    • /
    • 1975
  • This study was conducted to evaluate the winter active polycross progenies of 10 genotypes selected at the hot and dry climate of the Southern Oregon in their performance in the progeny test comparing with a high yielding variety, 'Fawn', and a winter active variety, 'TFM', as the control varieties at Daejon, Korea. Various plant and leaf characteristics, especially which related to photosynthesis, and forage production during the first summer after their establishment, were examined. The important conclusions of this study are summarized as follows: 1. The winter active genotypes and variety had less leaf fresh weight and dry weight per leaf than variety 'Fawn'. Variations among polycross progenies of genotypes for these characteristics were great. 2. The winter active genotypes and variety had less leaf area per leaf than variety 'Fawn'. Leaf area among polycross progenies of genotypes deviated greatly and poly cross progenies of 'genotype-16' had the same average leaf area as 'Fawn'. 3. Differences of specific leaf weight (S. L. W.) in the winter active genotypes and variety were not significant. Probably the genetic diversity for S. L. W were not big and were narrowed down already in this genetic population. It was suggested that the photosynthate production within the population might not be different and there might be differences in the photosynthate production-translocation balance. Further study for the diurnal change in S. L. W. within the population might be useful. 4. The winter active variety and genotypes had less leaf width than 'Fawn' does. Leaf width among polycross progenies of genotypes deviated significantly. 5. Differences among controls and polycross progeny group in the initial plant height were significant and variety 'Fawn' was taller than the winter active genotypes and variety. But the differences were not significant in the regrowth of plant height after the first forage harvest. On the contrary. the differences among polycross progenies of genotypes were not significant in the initial plant but the differences in their polycross progeny performance became obvious and great in the regrowth ability which is an improtent agronomic characteristics for forage crops produced in the pasture and for hay and silage. 6. Plant width of the winter active genotypes and variety was lesser than 'Fawn' variety. 7. Differences of tiller number became evident and variety 'Fawn' had higher tiller number than the winter active genotypes and variety after the first forage cutting. There, deviations among polycross progenies of genotypes were great for this characteristic. It was obvious that the genetic differences became more evident in the second measurement after the first cutting of forage probably because this characteristic were stimulated by defoliation in the cartain genotypes and variety. 8. The winter active genotypes and variety on the initial growth. the regrowth ability andtotal yield had lesser forage yield than variety 'Fawn'. Deviation of forage yield among polycross progenies of genotypes were great and gave basis for selection according to their polycross progeny performance improving the forage yield of these winter active tall fescue population during summer. 9. It was concluded that the winter active variety and genotypes in this study was poorer than variety 'Fawn' for the most of leaf and plant characteristics including forage yield. For these measurements, the variations among polycross progenies of genotypes were great. and plant breeding might able to improve further this winter active tall fescue through the polycross progeny testing method for the higher forage production during summer in Korea. 10. The result of the associations among various characteristics under study were quite agreeable with the results of the analysis of variance and woul be useful in the selection of desirable genotypes for the development of a new variety.

  • PDF

Performance Analysis of Frequent Pattern Mining with Multiple Minimum Supports (다중 최소 임계치 기반 빈발 패턴 마이닝의 성능분석)

  • Ryang, Heungmo;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 2013
  • Data mining techniques are used to find important and meaningful information from huge databases, and pattern mining is one of the significant data mining techniques. Pattern mining is a method of discovering useful patterns from the huge databases. Frequent pattern mining which is one of the pattern mining extracts patterns having higher frequencies than a minimum support threshold from databases, and the patterns are called frequent patterns. Traditional frequent pattern mining is based on a single minimum support threshold for the whole database to perform mining frequent patterns. This single support model implicitly supposes that all of the items in the database have the same nature. In real world applications, however, each item in databases can have relative characteristics, and thus an appropriate pattern mining technique which reflects the characteristics is required. In the framework of frequent pattern mining, where the natures of items are not considered, it needs to set the single minimum support threshold to a too low value for mining patterns containing rare items. It leads to too many patterns including meaningless items though. In contrast, we cannot mine any pattern if a too high threshold is used. This dilemma is called the rare item problem. To solve this problem, the initial researches proposed approximate approaches which split data into several groups according to item frequencies or group related rare items. However, these methods cannot find all of the frequent patterns including rare frequent patterns due to being based on approximate techniques. Hence, pattern mining model with multiple minimum supports is proposed in order to solve the rare item problem. In the model, each item has a corresponding minimum support threshold, called MIS (Minimum Item Support), and it is calculated based on item frequencies in databases. The multiple minimum supports model finds all of the rare frequent patterns without generating meaningless patterns and losing significant patterns by applying the MIS. Meanwhile, candidate patterns are extracted during a process of mining frequent patterns, and the only single minimum support is compared with frequencies of the candidate patterns in the single minimum support model. Therefore, the characteristics of items consist of the candidate patterns are not reflected. In addition, the rare item problem occurs in the model. In order to address this issue in the multiple minimum supports model, the minimum MIS value among all of the values of items in a candidate pattern is used as a minimum support threshold with respect to the candidate pattern for considering its characteristics. For efficiently mining frequent patterns including rare frequent patterns by adopting the above concept, tree based algorithms of the multiple minimum supports model sort items in a tree according to MIS descending order in contrast to those of the single minimum support model, where the items are ordered in frequency descending order. In this paper, we study the characteristics of the frequent pattern mining based on multiple minimum supports and conduct performance evaluation with a general frequent pattern mining algorithm in terms of runtime, memory usage, and scalability. Experimental results show that the multiple minimum supports based algorithm outperforms the single minimum support based one and demands more memory usage for MIS information. Moreover, the compared algorithms have a good scalability in the results.

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.

A Study on the Impact of Artificial Intelligence on Decision Making : Focusing on Human-AI Collaboration and Decision-Maker's Personality Trait (인공지능이 의사결정에 미치는 영향에 관한 연구 : 인간과 인공지능의 협업 및 의사결정자의 성격 특성을 중심으로)

  • Lee, JeongSeon;Suh, Bomil;Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.231-252
    • /
    • 2021
  • Artificial intelligence (AI) is a key technology that will change the future the most. It affects the industry as a whole and daily life in various ways. As data availability increases, artificial intelligence finds an optimal solution and infers/predicts through self-learning. Research and investment related to automation that discovers and solves problems on its own are ongoing continuously. Automation of artificial intelligence has benefits such as cost reduction, minimization of human intervention and the difference of human capability. However, there are side effects, such as limiting the artificial intelligence's autonomy and erroneous results due to algorithmic bias. In the labor market, it raises the fear of job replacement. Prior studies on the utilization of artificial intelligence have shown that individuals do not necessarily use the information (or advice) it provides. Algorithm error is more sensitive than human error; so, people avoid algorithms after seeing errors, which is called "algorithm aversion." Recently, artificial intelligence has begun to be understood from the perspective of the augmentation of human intelligence. We have started to be interested in Human-AI collaboration rather than AI alone without human. A study of 1500 companies in various industries found that human-AI collaboration outperformed AI alone. In the medicine area, pathologist-deep learning collaboration dropped the pathologist cancer diagnosis error rate by 85%. Leading AI companies, such as IBM and Microsoft, are starting to adopt the direction of AI as augmented intelligence. Human-AI collaboration is emphasized in the decision-making process, because artificial intelligence is superior in analysis ability based on information. Intuition is a unique human capability so that human-AI collaboration can make optimal decisions. In an environment where change is getting faster and uncertainty increases, the need for artificial intelligence in decision-making will increase. In addition, active discussions are expected on approaches that utilize artificial intelligence for rational decision-making. This study investigates the impact of artificial intelligence on decision-making focuses on human-AI collaboration and the interaction between the decision maker personal traits and advisor type. The advisors were classified into three types: human, artificial intelligence, and human-AI collaboration. We investigated perceived usefulness of advice and the utilization of advice in decision making and whether the decision-maker's personal traits are influencing factors. Three hundred and eleven adult male and female experimenters conducted a task that predicts the age of faces in photos and the results showed that the advisor type does not directly affect the utilization of advice. The decision-maker utilizes it only when they believed advice can improve prediction performance. In the case of human-AI collaboration, decision-makers higher evaluated the perceived usefulness of advice, regardless of the decision maker's personal traits and the advice was more actively utilized. If the type of advisor was artificial intelligence alone, decision-makers who scored high in conscientiousness, high in extroversion, or low in neuroticism, high evaluated the perceived usefulness of the advice so they utilized advice actively. This study has academic significance in that it focuses on human-AI collaboration that the recent growing interest in artificial intelligence roles. It has expanded the relevant research area by considering the role of artificial intelligence as an advisor of decision-making and judgment research, and in aspects of practical significance, suggested views that companies should consider in order to enhance AI capability. To improve the effectiveness of AI-based systems, companies not only must introduce high-performance systems, but also need employees who properly understand digital information presented by AI, and can add non-digital information to make decisions. Moreover, to increase utilization in AI-based systems, task-oriented competencies, such as analytical skills and information technology capabilities, are important. in addition, it is expected that greater performance will be achieved if employee's personal traits are considered.

A Study on the Variable Factors for Brain Perfusion SPECT(Diamox) Scan (Brain Perfusion SPECT(Diamox) 검사의 수행결과에 영향을 주는 요인)

  • Lee, Jin-Hyeong;Kim, Sang-Eon;Park, Hyeon-Soo;Park, Yeoung-Jae;Lee, In-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.99-103
    • /
    • 2011
  • Purpose: Head movement during brain perfusion SPECT (Diamox) scan is a one of important issues which decreases image quality. It also causes repeated scans. This study was designed to evaluate variable factors causing scan failures. Materials and Methods: 676 patients (359 men, 317 women, age average $54.5{\pm}18.4$) for brain perfusion SPECT (Diamox) scan from March, 2010 to Feb. 2011 were used as a subject. Age data and the kind of disease(Moyamoya disease (MMD), None moyamoya disease (NMMD), Cerebral infarction (CI)), test performance outcome (success,failure) were collected. The head movement factors(gender, disease, age, head fixation device) were evaluated by chi-square test and logistic regression analysis Results: The result showed that men had higher scan failure rate than women. Seniors in seventies(men 3.4%, women 1.5%) showed the most highest failure rate. Using head fixation device increased scan success rate up to 94.4~97.7%. The scan success rate is dependent upon gender, head fixation device by chi-square test(${\chi}^2$=3.8 (df=1, p<0.05), ${\chi}^2$=10.4 (df=1, p<0.001)) Gender, disease(CI), head fixation device showed very effective result in logistic regression analysis.(Wald=3.3 (p<0.07), Wald=3.7 (p<0.05), Wald=9.3 (p<0.05) Conclusion: It is demonstrated that gender, disease, using head fixation device is statistically very useful factors. Especially, head fixation device is a main key minimizing repeated scan.

  • PDF

Recognition and Request for Medical Direction by 119 Emergency Medical Technicians (119 구급대원들이 지각하는 의료지도의 필요성 인식과 요구도)

  • Park, Joo-Ho
    • The Korean Journal of Emergency Medical Services
    • /
    • v.15 no.3
    • /
    • pp.31-44
    • /
    • 2011
  • Purpose : The purpose of emergency medical services(EMS) is to save human lives and assure the completeness of the body in emergency situations. Those who have been qualified on medical practice to perform such treatment as there is the risk of human life and possibility of major physical and mental injuries that could result from the urgency of time and invasiveness inflicted upon the body. In the emergency medical activities, 119 emergency medical technicians mainly perform the task but they are not able to perform such task independently and they are mandatory to receive medical direction. The purpose of this study is to examine the recognition and request for medical direction by 119 emergency medical technicians in order to provide basic information on the development of medical direction program suitable to the characteristics of EMS as well as for the studies on EMS for the sake of efficient operation of pre-hospital EMS. Method : Questionnaire via e-mail was conducted during July 1-31, 2010 for 675 participants who are emergency medical technicians, nurses and other emergency crews in Gyeongbuk. The effective 171 responses were used for the final analysis. In regards to the emergency medical technicians' scope of responsibilities defined in Attached Form 14, Enforcement regulations of EMS, t-test analysis was conducted by using the means and standard deviation of the level of request for medical direction on the scope of responsibilities of Level 1 & Level 2 emergency medical technicians as the scale of medical direction request. The general characteristics, experience result, the reason for necessity, emergency medical technicians & medical director request level, medical direction method, the place of work of the medical director, feedback content and improvement plan request level were analyzed through frequency and percentage. The level of experience in medical direction and necessity were analyzed through ${\chi}^2$ test. Results : In regards to the medical direction experience per qualification, the experience was the highest with 53.3% for Level 1 emergency medical technicians and 80.3% responded that experience was helpful. As for the recognition on the necessity of medical direction, 71.3% responded as "necessary" and it turned out to be the highest of 76.9% in nurses. As for the reason for responding "necessary", the reason for reducing the risk and side-effects from EMS for patients was the largest(75.4%), and the reason of EMS delay due to the request of medical direction was the highest(71.4%) for the reason for responding "not necessary". In regards to the request level of the task scope of emergency medical technicians, injection of certain amount of solution during a state of shock was the highest($3.10{\pm}.96$) for Level 1 emergency rescuers, and the endotracheal intubation was the highest($3.12{\pm}1.03$) for nurses, and the sublingual administration of nitroglycerine(NTG) during chest pain was the highest($2.62{\pm}1.02$) for Level 2 emergency medical technicians, and regulation of heartbeat using AED was the highest($2.76{\pm}.99$) for other emergency crews. For the revitalization of medical direction, the improvement in the capability of EMS(78.9%) was requested from emergency crew, and the ability to evaluate the medical state of patient was the highest(80.1%) in the level of request for medical director. The prehospital and direct medical direction was the highest(60.8%) for medical direction method, and the emergency medical facility was the highest(52.0%) for the placement of medical director, and the evaluation of appropriateness of EMS was the highest(66.1%) for the feedback content, and the reinforcement of emergency crew(emergency medical technicians) personnel was the highest(69.0%) for the improvement plan. Conclusion : The medical direction is an important policy in the prehospital EMS activity because 119 emergency medical technicians agreed the necessity of medical direction and over 80% of those who experienced medical direction said it was helpful. In addition, the simulation training program using algorithm and case study through feedback are necessary in order to enhance the technical capability of ambulance teams on the item of professional EMS with high level of request in the task scope of emergency medical technicians, and recognition of medical direction is the essence of the EMS field. In regards to revitalizing medical direction, the improvement of the task performance capability of 119 emergency medical technicians and medical directors, reinforcement of emergency medical activity personnel, assurance of trust between emergency medical technicians and the emergency physician, and search for professional operation plan of medical direction center are needed to expand the direct medical direction method for possible treatment beforehand through the participation by medical director even at the step in which emergency situation report is received.

Analysis of Sustainable Management Factors in County Parks Based on the Sustainability Evaluation Framework of Korea Nature Parks - Focus on the 11 County Parks in Gyeongsangnam-do - (자연공원 지속가능성평가에 기반한 군립공원 지속가능성 영향요인 분석 - 경남권역 11개소 군립공원을 대상으로 -)

  • Hong, Sukhwan;Ahn, Rosa;Tian, Wanting;Heo, Hagyoung;Pak, Junhou
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.3
    • /
    • pp.12-21
    • /
    • 2020
  • This study aims to implement the Sustainability Evaluation Framework of Korea Natural Parks to county parks in Gyeongsangnam-do, and to review the performance status of management effectiveness evaluation (MEE) and identify factors that influence the improvement of management effectiveness in protected areas. County park officers evaluated current management using this framework that was developed based on the MEE framework designed by the Korean Ministry of Environment. Among the principal values of county parks, 'natural and ecological' is indicated as the most important, followed by 'cultural and historic value' and 'leisure and recreation'. Natural disasters and climate change, visitor impact-inappropriate visitor behavior are indicated as current threats, and three county parks administrators viewed that there was no particular threat to their park. According to MEE results, the most effective management fields were 'State of cultural and historic value', 'State of leisure and recreational value', 'Current state of principal value'. The comparatively weaker fields were 'Threatened species management', 'Invasive species management', 'Management monitoring and evaluation'. The effects of sustainable management on county parks were analyzed through a regression analysis, and the influence of management factors reveal 'Annual budget', will impact attaining higher management scores. This study presents the current management information about county parks and provides support for the basis for the planning of county parks in Korea, suggesting the influencing factor.

A New Detailed Assessment for Liquefaction Potential Based on the Liquefaction Driving Effect of the Real Earthquake Motion (실지진하중의 액상화 발생특성에 기초한 액상화 상세평가법)

  • 최재순;강한수;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.145-159
    • /
    • 2004
  • The conventional method for assessment of liquefaction potential proposed by Seed and Idriss has been widely used in most countries because of simplicity of tests. Even though various data such as stress, strain, stress path, and excess pore water pressure can be obtained from the dynamic test, especially, two simple experimental data such as the maximum deviatoric stress and the number of cycles at liquefaction have been used in the conventional assessment. In this study, a new detailed assessment for liquefaction potential to reflect both characteristics of real earthquake motion and dynamic soil resistance is proposed and verified. In the assessment, the safety factor of the liquefaction potential at a given depth of a site can be obtained by the ratio of a resistible cumulative plastic shear strain determined through the performance of the conventional cyclic test and a driving cumulative plastic shear strain calculated from the shear strain time history through the ground response analysis. The last point to cumulate the driving plastic shear strain to initiate soil liquefaction is important for this assessment. From the result of cyclic triaxial test using real earthquake motions, it was concluded that liquefaction under the impact-type earthquake loads would initiate as soon as a peak loading signal was reached. The driving cumulative plastic shear strain, therefore, can be determined by adding all plastic shear strains obtained from the ground response analysis up to the peak point. Through the verification of the proposed assessment, it can be concluded that the proposed assessment for liquefaction potential can be a progressive method to reflect both characteristics of the unique soil resistance and earthquake parameters such as peak earthquake signal, significant duration time, earthquake loading type, and magnitude.