• 제목/요약/키워드: Implicit numerical integration

검색결과 119건 처리시간 0.029초

점소성 구성식의 적분에 미치는 선형화 방법의 영향 (Comparison of Semi-Implicit Integration Schemes for Rate-Dependent Plasticity)

  • 윤삼손;이순복
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1907-1916
    • /
    • 2003
  • During decades, there has been much progress in understanding of the inelastic behavior of the materials and numerous inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. To obtain the increment of state variable, its evolution laws are linearized by several approximation methods, such as general midpoint rule(GMR) or general trapezoidal rule(GTR). In this investigation, semi-implicit integration schemes using GTR and GMR were developed and implemented into ABAQUS by means of UMAT subroutine. The comparison of integration schemes was conducted on the simple tension case, and simple shear case and nonproportional loading case. The fully implicit integration(FI) was the most stable but amplified the truncation error when the nonlinearity of state variable is strong. The semi-implicit integration using GTR gave the most accurate results at tension and shear problem. The numerical solutions with refined time increment were always placed between results of GTR and those of FI. GTR integration with adjusting midpoint parameter can be recommended as the best integration method for viscoplastic equation considering nonlinear kinematic hardening.

실시간 차량 시뮬레이터 개발을 위한 암시적 적분기법을 이용한 병렬처리 알고리즘에 관한 연구 (Study on the parallel processing algorithms with implicit integration method for real-time vehicle simulator development)

  • 박민영;이정근;배대성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.497-500
    • /
    • 1995
  • In this paper, a program for real time simulation of a vehicle is developed. The program uses relative coordinates and BEF(Backward Difference Formula) numerical integration method. Numerical tests showed that the proposed implicit method is more stable in carring out the numerical integration for vehicl dynamics than the explicit method. Hardware requirements for real time simulation are suggested. Algorithms of parallel processing is developed with DSP (digital signal processor).

  • PDF

유연성을 갖는 매니퓰레이터 역학방정식의 간략화 (THE SIMPLICATION OF DYNAMICS FOR THE FLEXIBLE BODY)

  • 박화세;배준경;남호법;박종국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.950-953
    • /
    • 1988
  • The equations of motion for linearly elastic bodies undergoing large displacement motion are derived. This produces a set of equations which are efficient to numerically integrate. The equations for the elastic bodies are formulated and simplified to provide as much efficiency as possible in their numerical solution. A futher efficiency is obtained through the use of floating reference frame. The equation are presented in two forms for numerical integration. 1) Explicit numerical integration 2) Implicit numerical integration. In this paper, there was used the numerical integration. The implicit numerical integration is extended to solved second order equation, futher reducing the numerical effort required. The formulation given is seen to be occulate and is expected to be efficient for many types of problems.

  • PDF

A dissipative family of eigen-based integration methods for nonlinear dynamic analysis

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.541-557
    • /
    • 2020
  • A novel family of controllable, dissipative structure-dependent integration methods is derived from an eigen-based theory, where the concept of the eigenmode can give a solid theoretical basis for the feasibility of this type of integration methods. In fact, the concepts of eigen-decomposition and modal superposition are involved in solving a multiple degree of freedom system. The total solution of a coupled equation of motion consists of each modal solution of the uncoupled equation of motion. Hence, an eigen-dependent integration method is proposed to solve each modal equation of motion and an approximate solution can be yielded via modal superposition with only the first few modes of interest for inertial problems. All the eigen-dependent integration methods combine to form a structure-dependent integration method. Some key assumptions and new techniques are combined to successfully develop this family of integration methods. In addition, this family of integration methods can be either explicitly or implicitly implemented. Except for stability property, both explicit and implicit implementations have almost the same numerical properties. An explicit implementation is more computationally efficient than for an implicit implementation since it can combine unconditional stability and explicit formulation simultaneously. As a result, an explicit implementation is preferred over an implicit implementation. This family of integration methods can have the same numerical properties as those of the WBZ-α method for linear elastic systems. Besides, its stability and accuracy performance for solving nonlinear systems is also almost the same as those of the WBZ-α method. It is evident from numerical experiments that an explicit implementation of this family of integration methods can save many computational efforts when compared to conventional implicit methods, such as the WBZ-α method.

압축성 Navier-Stokes 방정식 해를 위한 고차 정확도 내재적 불연속 갤러킨 기법의 개발 (DEVELOPMENT OF A HIGH-ORDER IMPLICIT DISCONTINUOUS GALERKIN METHOD FOR SOLVING COMPRESSIBLE NAVIER-STOKES EQUATIONS)

  • 최재훈;이희동;권오준
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.72-83
    • /
    • 2011
  • A high-order discontinuous Galerkin method for the two-dimensional compressible Navier-Stokes equations was developed on unstructured triangular meshes. For this purpose, the BR2 methd(the second Bassi and Rebay discretization) was adopted for space discretization and an implicit Euler backward method was used for time integration. Numerical tests were conducted to estimate the convergence order of the numerical solutions of the Poiseuille flow for which analytic solutions are available for comparison. Also, the flows around a flat plate, a 2-D circular cylinder, and an NACA0012 airfoil were numerically simulated. The numerical results showed that the present implicit discontinuous Galerkin method is an efficient method to obtain very accurate numerical solutions of the compressible Navier-Stokes equations on unstructured meshes.

Nonlinear dynamic analysis by Dynamic Relaxation method

  • Rezaiee-Pajand, M.;Alamatian, J.
    • Structural Engineering and Mechanics
    • /
    • 제28권5호
    • /
    • pp.549-570
    • /
    • 2008
  • Numerical integration is an efficient approach for nonlinear dynamic analysis. In this paper, general category of the implicit integration errors will be discussed. In order to decrease the errors, Dynamic Relaxation method with modified time step (MFT) will be used. This procedure leads to an alternative algorithm which is very general and can be utilized with any implicit integration scheme. For numerical verification of the proposed technique, some single and multi degrees of freedom nonlinear dynamic systems will be analyzed. Moreover, results are compared with both exact and other available solutions. Suitable accuracy, high efficiency, simplicity, vector operations and automatic procedures are the main merits of the new algorithm in solving nonlinear dynamic problems.

극초음속 공기반응의 수치해석적 특성과 부분 내재적 적분법 적용 (Numerical Characteristics of Hypersonic Air Chemistry and Application of Partially Implicit Time Integration Method)

  • 김성룡;옥호남;라승호;김인선
    • 한국항공우주학회지
    • /
    • 제31권7호
    • /
    • pp.1-8
    • /
    • 2003
  • 본 논문은 극초음속 유동과 공력가열 해석에서 나타나는 공기 반응의 수치해석적 특징을 다루고 공기반응을 효율적으로 해석하는 부분 내재적 적분법을 공기반응에 적용하였다. 안정적 계산을 위해 화학반응 자코비안이 필수적임을 밝혔으며 자코비안의 양의 실수 특성치로 인한 수치기법의 경직성은 일반적인 연소반응에 비하여 미약하였다. 공기반응에서 부분 내재적 적분법은 화학종 순서의 종속성이 없었으며 완전 내재적 적분법과 동일한 수렴율과 계산 결과를 보였다. 극초음속 유동해석에 부분 내재적 적분법을 적용하면 전체 연산 시간이 감소되었다.

Numerical dissipation for explicit, unconditionally stable time integration methods

  • Chang, Shuenn-Yih
    • Earthquakes and Structures
    • /
    • 제7권2호
    • /
    • pp.159-178
    • /
    • 2014
  • Although the family methods with unconditional stability and numerical dissipation have been developed for structural dynamics they all are implicit methods and thus an iterative procedure is generally involved for each time step. In this work, a new family method is proposed. It involves no nonlinear iterations in addition to unconditional stability and favorable numerical dissipation, which can be continuously controlled. In particular, it can have a zero damping ratio. The most important improvement of this family method is that it involves no nonlinear iterations for each time step and thus it can save many computationally efforts when compared to the currently available dissipative implicit integration methods.

Dynamics of a bridge beam under a stream of moving elements -Part 1 - Modelling and numerical integration

  • Podworna, M.
    • Structural Engineering and Mechanics
    • /
    • 제38권3호
    • /
    • pp.283-300
    • /
    • 2011
  • A new conception of fundamental tasks in dynamics of the bridge-track-train systems (BTT), with the aim to evaluate moving load's models adequacy, has been developed. The 2D physical models of BTT systems, corresponding to the fundamental tasks, have been worked out taking into account one-way constraints between the moving unsprung masses and the track. A method for deriving the implicit equations of motion, governing vibrations of BTT systems' models, as well as algorithms for numerical integration of these equations, leading to the solutions of high accuracy and relatively short times of simulations, have been also developed. The derived equations and formulated algorithms constitute the basis for numerical simulation of vibrations of the considered systems.

New implicit higher order time integration for dynamic analysis

  • Alamatian, Javad
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.711-736
    • /
    • 2013
  • In this paper new implicit time integration called N-IHOA is presented for dynamic analysis of high damping systems. Here, current displacement and velocity are assumed to be functions of the velocities and accelerations of several previous time steps, respectively. This definition causes that only one set of weighted factors is calculated from the Taylor series expansion which leads to a simple approach and reduce the computational efforts. Moreover a comprehensive study on stability of the proposed method i.e., N-IHOA compared with IHOA integration which is performed based on amplification matrices proves the ability of the N-IHOA in high damping vibrations such as control systems. Also, wide range of numerical examples which contains single/multi degrees of freedom, damped/un-damped, free/forced vibrations from finite element/finite difference demonstrate that the accuracy and efficiency of the proposed time integration is more than the common approaches such as the IHOA, the Wilson-${\theta}$ and the Newmark-${\beta}$.