• Title/Summary/Keyword: Implicit Modeling

Search Result 133, Processing Time 0.027 seconds

Modeling of 2D Axisymmetric Reacting Flow in Solid Rocket Motor with Preconditioning

  • Lee, S.N.;Baek, S.W.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.260-265
    • /
    • 2008
  • A numerical scheme for solid propellant rocket has been studied using preconditioning method to research unsteady combustion processes for the double-base propellant with a converging-diverging nozzle. The Navier-Stokes equation is solved by dualtime stepping method with finite volume method. The turbulence model uses a shear stress transport modeling. The species equation follows up the method of Xinping WI, Mridul Kumar and Kenneth K. Kuo. A preconditioned algorithm is applied to solve incompressible regime inside the combustor and compressible flow at nozzle. Mass flux was evaluated using modified advective upwind splitting method. The simulated result the comparison a fully coupled implicit method and a semi implicit method in terms of accuracy and efficiency. This report shows the result of solid rocket propellant combustion.

  • PDF

Development of Ontology-based Intelligent Mold Design System (온톨로지 기반 지능형 금형 설계 시스템의 개발)

  • Lee, Sang-Hun;Kang, Mu-Jin;Eum, Kwang-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.167-177
    • /
    • 2011
  • This paper describes an ontology-based intelligent CAD system for injection mold design, which has been developed based on a commercial CAD system called Unigraphics and an ontological framework for representing the implicit design knowledge as well as the explicit based on the extended function-behavior-structure (FBS) engineering design model that includes the constraint. The system also provides various convenient solid modeling capabilities for mold design and the design process modeling capability that facilitates mold redesign process.

Volumetric NURBS Representation of Multidimensional and Heterogeneous Objects: Modeling and Applications (VNURBS기반의 다차원 불균질 볼륨 객체의 표현: 모델링 및 응용)

  • Park S. K.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.5
    • /
    • pp.314-327
    • /
    • 2005
  • This paper describes the volumetric data modeling and analysis methods that employ volumetric NURBS or VNURBS that represents heterogeneous objects or fields in multidimensional space. For volumetric data modeling, we formulate the construction algorithms involving the scattered data approximation and the curvilinear grid data interpolation. And then the computational algorithms are presented for the geometric and mathematical analysis of the volume data set with the VNURBS model. Finally, we apply the modeling and analysis methods to various field applications including grid generation, flow visualization, implicit surface modeling, and image morphing. Those application examples verify the usefulness and extensibility of our VNUBRS representation in the context of volume modeling and analysis.

Numerical anslysis of Transcritical Flow in Open Channels Using High-Resolution scheme I. : Model Development (고정확도 수치기법을 이용한 하천 천이류 해석 I. : 모형 개발)

  • Kim, Won;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.45-55
    • /
    • 2001
  • Transcritical flow is a term intended to denote the existence of both supercritical and subcritical flows within a computational domain. The major problems that need to be addressed while modeling transcritical flows include handling the differing features of signal propagation in subcritical and supercritical flow regions and maintaining conservation. The present study proposes the implicit ENO method as a high-resolution scheme for transcritical flow. This implicit ENO scheme is based on the ENO method, a new class of uniformly high-order-accurate essentially non-oscillatory implicit scheme, which has the advantage of unconditional stability. The implicit ENO scheme has not been used for the transcritical flow in open channel until now. As a result of application to the hypothetical dam-break flow, the implicit ENO scheme was ploved to produce accurate results with good robustness even though in the case of verb strong shock wave.

  • PDF

Modeling with Implicit Surface (음함수 곡면을 이용한 모델링)

  • Park, M.K.;Lee, E.T.
    • Electronics and Telecommunications Trends
    • /
    • v.13 no.3 s.51
    • /
    • pp.53-60
    • /
    • 1998
  • 이 논문은 음함수 곡면을 이용한 모델링의 역사와 그 응용 그리고 모델링의 여러 가지 접근 방법과 렌더링 방법을 분류, 비교하였다. 현존하는 문제점과 유효한 해결 방법 등을 평가하였고, 이 분야의 최첨단 기술에 대해서 논의하였다.

Construction of Revolved-Surface Design Tools Using Implicit Algebraic Functions (음대수 함수를 이용한 회전체를 위한 곡면 설계 도구의 구현)

  • Park, Sanghun;Ihm, Insung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 1996
  • Many efforts for finding smooth curves and surfaces satisfying given constraints have been made, and interpolation and approximation theories with the help of computers have played an important role in this endeavour. Most research in curve and surface modeling has been largely dominated by the theory of parametric representations. While they have been successfully used in representing physical objects, parametric surfaces are confronted with some problems when objects are represented and manipulated in geometric modeling systems. In recent year, increasing attention has been paid to implicit algebraic surfaces since they are often more effective than parametric surfaces are. In this paper, we summarize the geometric properties and computational processes of objects represented using implicit algebraic functions and explain of the implementation of design tools which can design curves and surfaces of revolution. These surfaces of revolution are played an importance role in effective areas such as CAD and CAM.

  • PDF

CONSEQUENCE OF BACKWARD EULER AND CRANK-NICOLSOM TECHNIQUES IN THE FINITE ELEMENT MODEL FOR THE NUMERICAL SOLUTION OF VARIABLY SATURATED FLOW PROBLEMS

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.197-215
    • /
    • 2015
  • Modeling water flow in variably saturated, porous media is important in many branches of science and engineering. Highly nonlinear relationships between water content and hydraulic conductivity and soil-water pressure result in very steep wetting fronts causing numerical problems. These include poor efficiency when modeling water infiltration into very dry porous media, and numerical oscillation near a steep wetting front. A one-dimensional finite element formulation is developed for the numerical simulation of variably saturated flow systems. First order backward Euler implicit and second order Crank-Nicolson time discretization schemes are adopted as a solution strategy in this formulation based on Picard and Newton iterative techniques. Five examples are used to investigate the numerical performance of two approaches and the different factors are highlighted that can affect their convergence and efficiency. The first test case deals with sharp moisture front that infiltrates into the soil column. It shows the capability of providing a mass-conservative behavior. Saturated conditions are not developed in the second test case. Involving of dry initial condition and steep wetting front are the main numerical complexity of the third test example. Fourth test case is a rapid infiltration of water from the surface, followed by a period of redistribution of the water due to the dynamic boundary condition. The last one-dimensional test case involves flow into a layered soil with variable initial conditions. The numerical results indicate that the Crank-Nicolson scheme is inefficient compared to fully implicit backward Euler scheme for the layered soil problem but offers same accuracy for the other homogeneous soil cases.

Observable Behavior for Implicit User Modeling -A Framework and User Studies-

  • Kim, Jin-Mook;Oard, Douglas W.
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.35 no.3
    • /
    • pp.173-189
    • /
    • 2001
  • This paper presents a framework for observable behavior that can be used as a basis for user modeling, and it reports the results of a pair of user studies that examine the joint utility of two specific behaviors. User models can be constructed by hand, or they can be teamed automatically based on feedback provided by the user about the relevance of documents that they have examined. By observing user behavior, it is possible to obtain implicit feedback without requiring explicit relevance judgments. Four broad categories of potentially observable behavior are identified : examine, retain, reference, and annotate, and examples of specific behaviors within a category are further subdivided based on the natural scope of information objects being manipulated . segment object, or class. Previous studies using Internet discussion groups (USENET news) have shown reading time to be a useful source of implicit feedback for predicting a user's preferences. The experiments reported in this paper extend that work to academic and professional journal articles and abstracts, and explore the relationship between printing behavior and reading time. Two user studies were conducted in which undergraduate students examined articles or abstracts from the telecommunications or pharmaceutical literature. The results showed that reading time can be used to predict the user's assessment of relevance, that the mean reading time for journal articles and technical abstracts is longer than has been reported for USENET news documents, and that printing events provide additional useful evidence about relevance beyond that which can be inferred from reading time. The paper concludes with a brief discussion of the implications of the reported results.

  • PDF

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam;Mohammad Saeid, Farajzadeh;Mohsenali, Shayanfar
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.369-379
    • /
    • 2023
  • Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.

ACCURACY AND EFFICIENCY OF A COUPLED NEUTRONICS AND THERMAL HYDRAULICS MODEL

  • Pope, Michael A.;Mousseau, Vincent A.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.885-892
    • /
    • 2009
  • This manuscript will discuss a numerical method where the six equations of two-phase flow, the solid heat conduction equations, and the two equations that describe neutron diffusion and precursor concentration are solved together in a tightly coupled, nonlinear fashion for a simplified model of a nuclear reactor core. This approach has two important advantages. The first advantage is a higher level of accuracy. Because the equations are solved together in a single nonlinear system, the solution is more accurate than the traditional "operator split" approach where the two-phase flow equations are solved first, the heat conduction is solved second and the neutron diffusion is solved third, limiting the temporal accuracy to $1^{st}$ order because the nonlinear coupling between the physics is handled explicitly. The second advantage of the method described in this manuscript is that the time step control in the fully implicit system can be based on the timescale of the solution rather than a stability-based time step restriction like the material Courant limit required of operator-split methods. In this work, a pilot code was used which employs this tightly coupled, fully implicit method to simulate a reactor core. Results are presented from a simulated control rod movement which show $2^{nd}$ order accuracy in time. Also described in this paper is a simulated rod ejection demonstrating how the fastest timescale of the problem can change between the state variables of neutronics, conduction and two-phase flow during the course of a transient.