• Title/Summary/Keyword: Implicit FDM

Search Result 20, Processing Time 0.026 seconds

Efficient Algorithm for the Solidification Simulation by FDM (FDM에 의한 응고해석시 계산기간 단축을 위한 Algorithm연구)

  • Lee, Jae-Kyung;Jeon, Ju-Mae;Jun, Ghi-Chan
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.412-418
    • /
    • 1994
  • Efficient algorithm for the solidification simulation by FDM is described from the practical point of views. If a proper time step ${\Delta}t$ is selected, the calculation is accelerated by implicit algorithm with the temperature recovery method of latent heat method. The implicit routine in the calculation is processed by SOR method(relaxation factor=1.5, truncation error=$10^{-4}$). The calculation is more accelerated by linear-interpolated explicite algorithm with a time step larger than the minimum value of the time step. This explicit method, which is applicable to the practical casting simulation problems, produces almost same results with about 40% faster calculation speed compared with the conventional explicit method.

  • PDF

Analysis of Moving Boundary Problem Using Extended Moving Least Squares Finite Difference Method (확장된 이동최소제곱 유한차분법을 이용한 이동경계문제의 해석)

  • Yoon, Young-Cheol;Kim, Do-Wan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.315-322
    • /
    • 2009
  • This paper presents a novel numerical method based on the extended moving least squares finite difference method(MLS FDM) for solving 1-D Stefan problem. The MLS FDM is employed for easy numerical modelling of the moving boundary and Taylor polynomial is extended using wedge function for accurate capturing of interfacial singularity. Difference equations for the governing equations are constructed by implicit method which makes the numerical method stable. Numerical experiments prove that the extended MLS FDM show high accuracy and efficiency in solving semi-infinite melting, cylindrical solidification problems with moving interfacial boundary.

Reduction of Computing Time through FDM using Implicit Method and Latent Heat Treatment in Solidification Analysis (FDM에 의한 응고해석시 계산시간 단축을 위한 음적해법의 적용과 잠열처리방법)

  • Kim, Tae-Gyu;Choi, Jung-Kil;Hong, Jun-Pyo;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.13 no.4
    • /
    • pp.323-332
    • /
    • 1993
  • An implicit finite difference formulation with three methods of latent heat treatment, such as equivalent specific heat method, temperature recovery method and enthalpy method, was applied to solidification analysis. The Neumann problem was solved to compare the numerical results with the exact solution. The implicit solutions with the equivalent specific heat method and the temperature recovery method were comparatively consistent with the Neumann exact solution for smaller time steps, but its error increased with increasing time step, especially in predicting the solidification beginning time. Although the computing time to solve energy equation using temperature recovery method was shorter than using enthalpy method, the method of releasing latent heat is not realistic and causes error. The implicit formulation of phase change problem requires enthalpy method to treat the release of latent heat reasonably. We have modified the enthalpy formulation in such a way that the enthalpy gradient term is not needed, and as a result of this modification, the computation stability and the computing time were improved.

  • PDF

Characteristics of a High Pressure Accumulator Type Fuel Injection System (축압식 고압 연료분사펌프 시스템 특성 해석)

  • Park, Seok Beom;Koo, Ja Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1101-1110
    • /
    • 1998
  • Computational investigation was conducted to examine the performance of a high pressure common-rail fuel injection system which is used to power a passenger car direct injection (Dl) diesel engine. The pipe flows were modeled by one dimensional wave equation and solved by implicit FDM Each volume of injector was considered as chambers with orifice nozzle in connections. These simulation results were compared with the experimental data of Ganser Hydromag. The comparison of needle life and rate of injection between simulation data and experimental data showed quite a good agreement Different shape of injection rate can be made by adjusting the size of inlet orifice and exit orifice in the piston chamber The pilot injection was accomplished by adjusting command signal.

An Imprevement of the Approximate-Factorization Scheme and Its Application to the Analysis of Incompressible Viscous Flows (근사인자화법의 개량과 비압축성 유동해석에의 응용)

  • 신병록
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1950-1963
    • /
    • 1995
  • A modification of the approximate-factorization method is made to accelerate the convergency rate and to take sufficiently large Courant number without loss of accuracy. And a stable implicit finite-difference scheme for solving the incompressible Navier-Stokes equations employed above modified method is developed. In the present implicit scheme, the volume fluxes with contravariant velocity components and the pressure formulation in curvilinear coordinates is adopted. In order to satisfy the continuity condition completely and to remove spurious errors for the pressure, the Navier-Stokes equations are solved by a modified SMAC scheme using a staggered gird. The upstream-difference scheme such as the QUICK scheme is also employed to the right hand side. The implicit scheme is unconditionally stable and satisfies a diagonally dominant condition for scalar diagonal linear systems of implicit operator on the left hand side. Numerical results for some test calculations of the two-dimensional flow in a square cavity and over a backward-facing step are obtained using both usual approximate-factorization method and the modified one, and compared with each other. It is shown that the present scheme allows a sufficiently large Courant number of O(10$^{2}$) and reduces the computing time.

Study for the Pertinent Scheme of the One Dimensional FDM Analysis (1차원 압밀 F.D.M 해석의 최적도식(Scheme) 연구)

  • 김팔규;김지호;구기욱;류권일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.631-638
    • /
    • 2000
  • Pioneering work by Terzaghi imparted scientific and mathematical bases to many aspects of this subject and many people use this theory to measure the consolidation settlement until now. In this paper, Finite Difference Methods for consolidation are considered. First, it is shown the stability criterion of Explicit scheme and the Crank-Nicolson scheme, although unconditionally stable in the mathematical sense, produces physically unrealistic solutions when the time step is large. it is also shown that The Fully Implicit scheme shows more satisfactory behavior, but is less accurate for small time steps. and then we need to decide what scheme is more proper to consolidation. The purpose of this paper is to suggest the pertinent scheme to consolidation.

  • PDF

A Study of Localization of the Adiabatic Shear Band with Numerical Method (단열전단변형에서 국부화에 대한 수치해석적 연구)

  • 이병섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.225-228
    • /
    • 1999
  • In a plastically deformed body the formation of a shear band is widely observed in the engineering materials during rapidly forming process for a thermally rate-sensitive material. The localized shear bond stems from evolution of a narrow region in which intensive plastic flow occurs. The shear band often plays as a precursor of the ductile fracture during a forming process. The objectives of this study are to investigate the localization behaivor by using numerical method thus predict the failure. In this work the implicit finite difference scheme is preformed due to the ease of covergence and the numerical stability. This study is based on an analysised material with hardening as well as thermally softening behavior which includes isotropy strain hardening. Furthermore this paper suggests that an anticipated and suggested a kinematic hardening constitutive equation be requried to predicte a more accurate strain level wherein a shear band occurs.

  • PDF

A Study of Localization with Material Properties Using Numerical Method (재료의 특징에 따른 국부화에 대한 수치해석적 연구)

  • 황두순;이병섭;이용성;윤수진;홍성인
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.395-403
    • /
    • 2000
  • Formation of Shear Band under the adiabatic condition is widely observed In the engineering materials during rapidly forming process lot a thermally rate-dependent material. The shear band stems from evolution of a narrow region in which an intensive plastic flow occurs. The shear band often plays a role of a precursor of the ductile fracture during a forming process. The objective of this study is to investigate the localization behavior using numerical method. In this work, the implicit finite difference scheme is employed due to the ease of convergence and the numerical stability It is noted that physical and mechanical properties of materials determine how the shear band is formed and then localized. Material properties can be characterized with inertia number dissipation number and diffusion number. It is observed that the dimensionless numbers effect on localization. Using a parametric study, comparison was made between CRS-1018 steel with WHA (tungsten heavy alloy). The deformation behavior of material in this study include an isotropic hardening as well as thermal softening. Moreover, this study suggests that a kinematic hardening constitutive relation be required to predict a more accurate strain level at a shear band.

  • PDF

Numerical Simulation of 2-D Estuaries and Coast by Multi-Domain and the Interpolating Matrix Method (Multi-Domain과 행렬 보간법을 이용한 강 하구와 연안의 2차원 수치해석)

  • Chae H. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 1997
  • This paper presents a two-dimensional horizontal implicit model to general circulation in estuaries and coastal seas. The model is developed in non-orthogonal curvilinear coordinates system, using the Interpolating Matrix Method (IMM), in combination with a technique of multi-domain. In the propose model, the Saint-Venant equations are solved by a splitting-up technique, in the successive steps; convection, diffusion and wave propagation. The ability of the proposed model to deal with full scale nature is illustrated by the interpretation of a dye-tracing experiment in the Gironde estuary.

  • PDF

Numerical Simulations of Nonlinear Waves Generated by Submerged Bodies (잠수물체에 의하여 발생되는 비선형파의 수치 시뮬레이션)

  • Kang Kuk-Jin
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 1997
  • A fundamental study for the numerical scheme to simulate unsteady nonlinear waves by solving Euler equations is presented. First a conservation form and a non-conservation form of the Euler equations with a free surface fitted coordinate system are compared. Next, a time splitting fractional step method and an alternating direction implicit(ADI) method for the time integration are compared. For the comparative study, flow calculations around a bottom bump in a channel and a NACA 0012 hydrofoil in a flume are performed. The results show that the ADI method with a third order upwind differencing scheme is very efficient in reducing the computing time with keeping the accuracy, And, there is no distinct difference between two expression forms except that the non-conservative form shows faster wave propagating velocity than the conservation form. Some results are compared with experiments and show good agreement.

  • PDF