• Title/Summary/Keyword: Implantation

Search Result 2,099, Processing Time 0.033 seconds

Improvement of Gate Dielectric Characteristics in MOS Capacitor by Deuterium-ion Implantation Process (중수소 이온 주입에 의한 MOS 커패시터의 게이트 산화막 절연 특성 개선)

  • Seo, Young-Ho;Do, Seung-Woo;Lee, Yong-Hyun;Lee, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.609-615
    • /
    • 2011
  • This paper is studied for the improvement of the characteristics of gate oxide with 3-nm-thick gate oxide by deuterium ion implantation methode. Deuterium ions were implanted to account for the topography of the overlaying layers and placing the D peak at the top of gate oxide. A short anneal at forming gas to nitrogen was performed to remove the damage of D-implantation. We simulated the deuterium ion implantation to find the optimum condition by SRIM (stopping and range of ions in matter) tool. We got the optimum condition by the results of simulation. We compare the electrical characteristics of the optimum condition with others terms. We also analyzed the electrical characteristics to change the annealing conditions after deuterium ion implantation. The results of the analysis, the breakdown time of the gate oxide was prolonged in the optimum condition. And a variety of annealing, we realized the dielectric property that annealing is good at longer time. However, the high temperature is bad because of thermal stress.

Expression Profiles of Secretory Leucocyte Protease Inhibitor, MMP9, and Neutrophil Elastase in the Mouse Uterus

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.14 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • The tremendous changes of uterine endometrium are observed during early pregnancy and protease and their inhibitors are involved in regulation of cell proliferation and remodeling of the tissues through remodeling the extracellular matrix (ECM). Some of the proteases and protease inhibitors have been suspected to a factor in endometrial changes but many parts of their expression profiles and the physiological roles are not uncovered. To evaluate the functional roles of them, in this study the expression profiles of proteases and protease inhibitors were analyzed using real-time quantitative PCR analysis. Mmp9 (matrix metalloproteinase 9) mRNA levels peaked on day 4 at the time of implantation. On the other hand, Ela2 (neutrophil elastase, NE) mRNA levels were peaked on day 2 of pregnancy. Its expression were decreased until day 4 of pregnancy but increased rapidly until day 7 of pregnancy and decreased again. NE inhibitor Slpi (secretory leukocyte protease inhibitor, SLPI) mRNA levels were related with the implantation stage and with the levels of Ela2. At the time of implantation the expression levels of Slpi mRNA were about 5 times higher than the Ela2 mRNA in the uterus. In the implantation stage embryos, Mmp9 specific mRNA was only detected at the blastocyst. On the other hand, the expression level of SLPI was higher than that of the Ela2 mRNA at blastocyst and 4.5 day p.c. embryos. Based on these results it is suggested that MMP9, SLPI, and NE have important physiological role in embryo implantation both in uterus and embryos.

SURFACE PROCESSING OF TOOLS AND COMPONENTS BY MEVVA SOURCE ION IMPLANTATION

  • Lin, W.L.;Sang, J.M.;Ding, X.J.;Yuan, X.M.;Xu, J.;Zhang, H.X.;Zhang, X.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.106-114
    • /
    • 1995
  • Direct implantation of metallic ion species has been employed in surface processing of industrial components and tools with very encouraging improvements in recent years. In spite of high technicla effectiveness, this new surface processing technique has not been extensively accepted by industries mainly because of high cost(capital and operating) compared with other competitive surface processing techniques. High current and large implantation area with eliminating the mass analyzer and the beam-scanning unit make metal vapor vacuum are(MEVVA)source ion implantation versatile, simple and cheap to operate and well suited to commercial surface processing. In this paper, the recent development of MEVVA source ion implantation technique ar Beijing Normal University has been reviewed and the results of production trials of several industrial components and tools implanted by MEVVA source ion implantation have been presented and discussed.

  • PDF

Non-gaseous Plasma Immersion Ion Implantation and Its Applications

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.151-151
    • /
    • 2012
  • A new plasma process, i.e., the combination of PIII&D and HIPIMS, was developed to implant non-gaseous ions into materials surface. HIPIMS is a special mode of operation of pulsed-DC magnetron sputtering, in which high pulsed DC power exceeding ~1 kW/$cm^2$ of its peak power density is applied to the magnetron sputtering target while the average power density remains manageable to the cooling capacity of the equipment by using a very small duty ratio of operation. Due to the high peak power density applied to the sputtering target, a large fraction of sputtered atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed plasma of sputtered target material by HIPIMS operation, the implantation of non-gaseous ions can be successfully accomplished. The new process has great advantage that thin film deposition and non-gaseous ion implantation along with in-situ film modification can be achieved in a single plasma chamber. Even broader application areas of PIII&D technology are believed to be envisaged by this newly developed process. In one application of non-gaseous plasma immersion ion implantation, Ge ions were implanted into SiO2 thin film at 60 keV to form Ge quantum dots embedded in SiO2 dielectric material. The crystalline Ge quantum dots were shown to be 5~10 nm in size and well dispersed in SiO2 matrix. In another application, Ag ions were implanted into SS-304 substrate to endow the anti-microbial property of the surface. Yet another bio-application was Mg ion implantation into Ti to improve its osteointegration property for bone implants. Catalyst is another promising application field of nongaseous plasma immersion ion implantation because ion implantation results in atomically dispersed catalytic agents with high surface to volume ratio. Pt ions were implanted into the surface of Al2O3 catalytic supporter and its H2 generation property was measured for DME reforming catalyst. In this talk, a newly developed, non-gaseous plasma immersion ion implantation technique and its applications would be shown and discussed.

  • PDF

Th 17 Cells and Nesfatin-1 are associated with Spontaneous Abortion in the CBA/j×DBA/2 Mouse Model

  • Chung, Yiwa;Kim, Heejeong;Im, Eunji;Kim, Philjae;Yang, Hyunwon
    • Development and Reproduction
    • /
    • v.19 no.4
    • /
    • pp.243-252
    • /
    • 2015
  • The pregnancy and abortion process involves a complex mechanism with various immune cells present in the implantation sites and several hormones associated with pregnancy, such as leptin, ghrelin and nesfatin-1. However, the mechanism underlying spontaneous abortion by maternal T helper 17 (Th17) present in the implantation sites and nesfatin-1, which is of anorexigenic hormones, is not fully understood so far. Therefore, the purpose of this study was to examine the possible roles of Th17 cells present in the implantation sites and nesfatin-1 expressed in the uterus on spontaneous abortion using the $CBA/j{\times}DBA/2$ mouse model. Th17 transcription factor, ROR-${\gamma}t$ mRNA expression was significantly increased in the abortion sites compared with the implantation sites of abortion model mice on day 14.5 and 19.5 of pregnancy. In addition, the expression levels of IL-17A mRNA were significantly higher in abortion sites than in implantation sites on day 14.5 and 19.5. Moreover, the nesfatin-1/NUCB2 protein and mRNA levels were increased in abortion sites compared with levels in implantation sites of both normal pregnant and abortion model mice on day 14.5 of pregnancy. Interestingly, nesfatin-1/NUCB2 serum levels were not changed throughout the whole pregnancy in abortion model mice, but its serum level was dramatically increased on day 14.5, and then rapidly decreased on day 19.5 in normal pregnant mice. In this study, we showed for the first time the expression of nesfatin-1/NUCB2 mRNA and protein in implantation sites during pregnancy. The present results suggest that Th17 cells in the uterus may play an important role in the period of implantation and for maintenance of pregnancy. Furthermore, the present results suggest that Th17 cells in implantation sites may be a key regulator for maintenance of pregnancy and provides evidence that activation of these cells may be regulated by nesfatin-1/NUCB2. Further study is needed to elucidate the role of nesfatin-1 expressed in the uterus during pregnancy.

Formation of ultra-shallow $p^+-n$ junction through the control of ion implantation-induced defects in silicon substrate (이온 주입 공정시 발생한 실리콘 내 결함의 제어를 통한 $p^+-n$ 초 저접합 형성 방법)

  • 이길호;김종철
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.326-336
    • /
    • 1997
  • From the concept that the ion implantation-induced defect is one of the major factors in determining source/drain junction characteristics, high quality ultra-shallow $p^+$-n junctions were formed through the control of ion implantation-induced defects in silicon substrate. In conventional process of the junction formation. $p^+$ source/drain junctions have been formed by $^{49}BF_2^+$ ion implantation followed by the deposition of TEOS(Tetra-Ethyl-Ortho-Silicate) and BPSG(Boro-Phospho-Silicate-Glass) films and subsequent furnace annealing for BPSG reflow. Instead of the conventional process, we proposed a series of new processes for shallow junction formation, which includes the additional low temperature RTA prior to furnace annealing, $^{49}BF_2^+/^{11}B^+$ mixed ion implantation, and the screen oxide removal after ion implantation and subsequent deposition of MTO (Medium Temperature CVD oxide) as an interlayer dielectric. These processes were suggested to enhance the removal of ion implantation-induced defects, resulting in forming high quality shallow junctions.

  • PDF

Maternal-Conceptus Interactions: Mediators Regulating the Implantation Process in Pigs

  • Choi, Yohan;Seo, Heewon;Yoo, Inkyu;Han, Jisoo;Jang, Hwanhee;Kim, Minjeong;Ka, Hakhyun
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.9-19
    • /
    • 2014
  • For successful embryo implantation, the communication of the maternal endometrium with the conceptus trophectoderm is required essentially. In pigs, conceptuses undergo morphological change in length to enlarge the physical contact area with the maternal endometrium and secrete estrogen to induce the maternal recognition of pregnancy during the peri-implantation period. Conceptus-derived estrogen prevents luteolysis by conversion in direction of $PGF_{2{\alpha}}$ secretion from the uterine vasculature to the uterine lumen as well as it affects on expression of the uterine endometrial genes. In addition to estrogen, conceptuses release various signaling molecules, including cytokines, growth factors, and proteases, and, in response to these signaling molecules, the maternal uterine endometrium also synthesizes many signaling molecules, including hormones, cytokines, growth factors, lipid molecules, and utilizes ions such as calcium ion by calcium regulatory molecules. These reciprocal interactions of the conceptus trophectoderm with the maternal uterine endometrium make development and successful implantation of embryos possible. Thus, signaling molecules at the maternal-conceptus interface may play an important role in the implantation process. This review summarized syntheses and functions of signaling molecules at the maternal-conceptus interface to further understand mechanisms of the embryo implantation process in pigs.

Relationship between reactive oxygen species and autophagy in dormant mouse blastocysts during delayed implantation

  • Shin, Hyejin;Choi, Soyoung;Lim, Hyunjung Jade
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.41 no.3
    • /
    • pp.125-131
    • /
    • 2014
  • Objective: Under estrogen deficiency, blastocysts cannot initiate implantation and enter dormancy. Dormant blastocysts live longer in utero than normal blastocysts, and autophagy has been suggested as a mechanism underlying the sustained survival of dormant blastocysts during delayed implantation. Autophagy is a cellular degradation pathway and a central component of the integrated stress response. Reactive oxygen species (ROS) are produced within cells during normal metabolism, but their levels increase dramatically under stressful conditions. We investigated whether heightened autophagy in dormant blastocysts is associated with the increased oxidative stress under the unfavorable condition of delayed implantation. Methods: To visualize ROS production, day 8 (short-term dormancy) and day 20 (long-term dormancy) dormant blastocysts were loaded with $1-{\mu}M$ 5-(and-6)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-$H_2DCFDA$). To block autophagic activation, 3-methyladenine (3-MA) and wortmannin were used in vivo and in vitro, respectively. Results: We observed that ROS production was not significantly affected by the status of dormancy; in other words, both dormant and activated blastocysts showed high levels of ROS. However, ROS production was higher in the dormant blastocysts of the long-term dormancy group than in those of the short-term group. The addition of wortmannin to dormant blastocysts in vitro and 3-MA injection in vivo significantly increased ROS production in the short-term dormant blastocysts. In the long-term dormant blastocysts, ROS levels were not significantly affected by the treatment of the autophagy inhibitor. Conclusion: During delayed implantation, heightened autophagy in dormant blastocysts may be operative as a potential mechanism to reduce oxidative stress. Further, ROS may be one of the potential causes of compromised developmental competence of long-term dormant blastocysts after implantation.

ASSESSMENT OF BONE DENSITY ON MAXILLA AFTER IMPLANTATION WITH CONE BEAM COMPUTED TOMOGRAPHY (Cone Beam Computed Tomography를 이용한 상악 임플란트 식립 전후의 골밀도 변화에 관한 연구)

  • Choi, Jeong-Hun;Lee, Ju-Min;Kim, Yong-Deok;Shin, Sang-Hun;Chung, In-Kyo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.3
    • /
    • pp.229-235
    • /
    • 2010
  • Purpose: This study examined the significance of increased bone density according to time after implantation on maxilla using demographic data with CBCT and compared the bone density between before vs. after implantation using the Hounsfield index. Materials and Methods: Twenty-five implant site on maxilla were selected. Cone-beam computerized tomography (CBCT) scans were used for the analysis. The implant sites were evaluated digitally using the Hounsfield scale with EzImplant TM and the results were compared over time. Statistical data over time was carried out to determine the correlation between the recorded Hounsfield unit (HU) over time and gender difference using repeated ANOVA. Results: The bone density of implantation site over time showed an increase in the HU mean values. Immediately after implantation, bone density was significantly increased than bone density before implantation. Until 6 month follow-up, bone density showed stable increasement. There is no significant difference on gender. Conclusions: Using CBCT, bone density increased over time after implantation on maxilla. Bone density measurements using CBCT might provide an objective assessment of the bone quality as well as the correlation between bone density and stability of implant.

Autologous Chondrocyte Implantation (자가연골 세포이식)

  • Jeong, Hwa-Jae
    • Journal of the Korean Arthroscopy Society
    • /
    • v.12 no.3
    • /
    • pp.159-166
    • /
    • 2008
  • Articular cartilage is a unique tissue with no vascular, nerve, or lymphatic supply. This uniqueness may be one of the reasons why chondral injuries will hardly heal and may progress to osteoarthritis over time. Currently, there are several surgical options for the treatment of articular cartilage lesions. Although there is some discrepancy as to which procedures work best in certain patients. The spectrum of treatment alternatives for articular cartilage defects can range from simple lavage and debridement, drilling, micro-fracturing, and abrasion to osteochondral grafting and autologous chondrocyte implantation. In 1984, for the first time, results of autologous chondrocyte implantation in a rabbit model were presented, showing hyaline cartilage repair. Clinical study using autologous cultured chondrocyte implantation in chondral defects of the human knee has been reported in 23 patients in 1994. In 14 out of 16 patients treated for chondral injuries on the femoral condyles, the results were good to excellent. It is important for the surgeon to understand the autologous chondrocyte implantation technique and to be aware on the postoperative management. Attention to surgical technique and selection of appropriate patient for the autologous chondrocyte implantation will provide with the best results.

  • PDF