• 제목/요약/키워드: Implantable Devices

Search Result 103, Processing Time 0.02 seconds

Active Implantable Device Technology Trend: BCI Application Focus (능동형 임플란터블 디바이스 기술동향: BCI 응용 중심)

  • Lee, S.Q.;Byun, C.W.;Kim, Y.G.;Park, H.I.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.6
    • /
    • pp.27-39
    • /
    • 2017
  • A variety of medical devices are utilized to repair or help injured body functions after accidental injury(such as a traffic accident), population aging, or disease. Such medical devices are being actively researched and developed in portable form, skin patchable type, and further, implantable form. In the future, active implantable medical devices for neuro and brain sciences are expected to be developed. Active implantable medical devices that detect brain signals and control neurology for a wider understanding of human cognition and nerve functions, and for an understanding and treatment of various diseases, are being actively pursued for future use. In this paper, the core elements of implantable devices that can be applied to neuro and brain sciences are classified into electrode technologies for bio-signal acquisition and stimulation, analog/digital circuit technologies for signal processing, human body communication technologies, wireless power transmission technologies for continuous device use, and device integration technologies to integrate them. In each chapter, the latest technology development trends for each detailed technology field are reviewed.

Wearable and Implantable Sensors for Cardiovascular Monitoring: A Review

  • Jazba Asad;Jawwad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.171-185
    • /
    • 2023
  • The cardiovascular syndrome is the dominant reason for death and the number of deaths due to this syndrome has greatly increased recently. Regular cardiac monitoring is crucial in controlling heart parameters, particularly for initial examination and precautions. The quantity of cardiac patients is rising each day and it would increase the load of work for doctors/nurses in handling the patients' situation. Hence, it needed a solution that might benefit doctors/nurses in monitoring the improvement of the health condition of patients in real-time and likewise assure decreasing medical treatment expenses. Regular heart monitoring via wireless body area networks (WBANs) including implantable and wearable medical devices is contemplated as a life-changing technique for medical assistance. This article focuses on the latest development in wearable and implantable devices for cardiovascular monitoring. First, we go through the wearable devices for the electrocardiogram (ECG) monitoring. Then, we reviewed the implantable devices for Blood Pressure (BP) monitoring. Subsequently, the evaluation of leading wearable and implantable sensors for heart monitoring mentioned over the previous six years, the current article provides uncertain direction concerning the description of diagnostic effectiveness, thus intending on making discussion in the technical communal to permit aimed at the formation of well-designed techniques. The article is concluded by debating several technical issues in wearable and implantable technology and their possible potential solutions for conquering these challenges.

Power-Efficient Wireless Neural Stimulating System Design for Implantable Medical Devices

  • Lee, Hyung-Min;Ghovanloo, Maysam
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.133-140
    • /
    • 2015
  • Neural stimulating implantable medical devices (IMDs) have been widely used to treat neurological diseases or interface with sensory feedback for amputees or patients suffering from severe paralysis. More recent IMDs, such as retinal implants or brain-computer interfaces, demand higher performance to enable sophisticated therapies, while consuming power at higher orders of magnitude to handle more functions on a larger scale at higher rates, which limits the ability to supply the IMDs with primary batteries. Inductive power transmission across the skin is a viable solution to power up an IMD, while it demands high power efficiencies at every power delivery stage for safe and effective stimulation without increasing the surrounding tissue's temperature. This paper reviews various wireless neural stimulating systems and their power management techniques to maximize IMD power efficiency. We also explore both wireless electrical and optical stimulation mechanisms and their power requirements in implantable neural interface applications.

Implantable Functional Electrical Stimulation with Inductive Power and Data Transmission System (유도전력전송방식의 이식형 기능적 전기자극)

  • Lee, Joon-Ha
    • Journal of Yeungnam Medical Science
    • /
    • v.24 no.2
    • /
    • pp.97-106
    • /
    • 2007
  • Functional electrical stimulation (FES) has developed over the last 35 years to become a scientifically, technologically and clinically recognized field of interest in clinical medicine. FES has been applied to locomotion, grasping, ventilation, incontinence, and decubitus healing. However, all of these achievements illustrate the initial applications of FES; its true potential has not yet been realized. Recently, FES systems, which are miniaturized stimulation devices, have been utilized in the clinical setting. However, because the stimulating electrodes of the current FES devices are percutaneous electrodes, which are susceptible to wire breakage, and skin infection an implantable FES stimulating electrode has been introduced in the U.S. and Japan. In the present study, an external power supply method using radio frequency (RF) coupling and data transmission was developed for the control of the implantable FES device. In addition, we review the current understanding of FES devices and their application in clinical medicine.

  • PDF

Incomplete Removal of Totally Implantable Venous Devices : Report of 2 Cases (Totally Implantable Venous Devices (TIVD)의 불완전 제거 2예)

  • Son, Sang-Yong;Lee, Han-Byoel;Kim, Soo-Hong;Park, Taejin;Jung, Kyuhwan;Kim, Hyun-Young;Kim, Woong-Han;Jung, Sung-Eun
    • Advances in pediatric surgery
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 2012
  • Totally implantable venous devices (TIVD)는 장기간 항암 화학 요법이나 총 정맥 영양, 수액치료가 필요한 환자에서 많이 사용된다. TIVD는 매우 유용하고 안전한 장치이지만, 이와 관련된 다양한 합병증이 보고 되어 왔다. 저자들은 카테터의 혈관 내 유착에 의해 TIVD의 제거가 불완전하게 된 2예를 경험하였기에 보고하는 바이다.

  • PDF

The Development of Neuromuscular Electrical Stimulation Medical Devices for The Treatment of Non-implantable Urinary Incontinence (비이식형 요실금 치료용 신경근 전기자극 의료기기 개발)

  • Lee, Jae-Yong;Lee, Chang-Doo;Kwon, Ki-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • In this paper, the neuromuscular electrical stimulation medical devices for non-implantable incontinence treatment other than vaginal insertion type was developed and commercialized. The structure of medical devices for electrical stimulation based on the anatomy of the pelvic floor muscle designed. Then, the optimum parameters that may be effective in pelvic floor muscle electrical stimulation was set. The circuit system based on the optimum parameters were designed and manufactured. The frequency of the pulse voltage for electrical stimulation is 75[Hz], the pulse width is 300[${\mu}s$], the development of medical devices was to have seven program functions to the various treatments. The circuit system of medical devices was composed of microcontroller, comparator and converter. The performance of the developed circuit system in KTC(Korea Testing Certification) were carried out medical equipment inspection test. Test results, test specifications were satisfied with the medical device, the performance was verified to be commercialized as a medical device. The development of medical devices were validated risk assessment and product performance through a software validation. Commercialization of medical equipment was acquired to enable the certification standards of the international standard IEC 60601-1.

Development of Fully-Implantable Middle Ear Hearing Device with Differential Floating Mass Transducer : Current Status

  • Cho Jin-Ho;Park Il-Yong;Lee Sang-Heun
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.309-317
    • /
    • 2005
  • It is expected that fully-implantable middle-ear hearing devices (FIMEHDs) will soon be available with the advantages of complete concealment, easy surgical implantation, and low power operation to resolve the problems of semi-implantable middle-ear hearing devices (SIMEHDs) such as discomfort of wearing an external device and replacement of battery. Over the last 3 years, a Korean research team at Kyungpook National University has developed an FIMEHD called ACRHS-1 based on a differential floating mass transducer (DFMT). The main research focus was functional improvement, the establishment of easy surgical procedures for implantation, miniaturization, and a low-power operation. Accordingly, this paper reviews the overall system architecture, functions, and experimental results for ACRHS-1 and its related accessories, including a wireless battery charger and remote controller.

Implantable and Flexible GaN LED for Biomedical Applications

  • Lee, Geon-Jae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.17.1-17.1
    • /
    • 2011
  • Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as a type of implantable LED biosensor and as a therapy tool.

  • PDF

Verification of a Function-based Security Authentication Protocol for Implantable Medical Devices (함수 기반의 체내 삽입장치용 보안 인증프로토콜 검증)

  • Bae, WooSik;Han, KunHee
    • Journal of Digital Convergence
    • /
    • v.12 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • Recent advancement of USN technology has lent itself to the evolving communication technology for implantable devices in the field of medical service. The wireless transmission section for communication between implantable medical devices and patients is a cause of concern over invasion of privacy, resulting from external attackers' hacking and thus leakage of private medical information. In addition, any attempt to manipulate patients' medical information could end up in serious medical issues. The present study proposes an authentication protocol safe against intruders' attacks when RFID/USN technology is applied to implantable medical devices. Being safe against spoofing, information exposure and eavesdropping attacks, the proposed protocol is based on hash-function operation and adopts session keys and random numbers to prevent re-encryption. This paper verifies the security of the proposed protocol using the formal verification tool, Casper/FDR.

Research Trends and Challenges in Technology Development of Medical Electronic Implant Devices (이식형 전자의료기 연구동향과 기술개발의 과제)

  • Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.415-430
    • /
    • 2008
  • The technologies in medical electronic implant(MEI) devices are developing rapidly, and already, there are various kinds of the MEI devices in the current medical equipments market. Recently, the global market scale of MEI devices have been increased about 13% year by year, and the import amount of MEI devices in Korea is increasing rapidly. In the near future, the demands of MEI devices will be magnificently increasing by the continuous development of the biomedical electronics devices which coupled with neural, brain and other organs will bring us to tremendous effects, such as providing new therapeutic solutions to patients, extension and saving human life, and an important clue of medical development. However, the investment of the research and the activity of developments in this field are still very weak in the Korea. Consequently, this paper introduces about the research trends of MEI devices, and technological problems those must be solved, and then concludes with the suggestions in order to be the leading country in this field.