• Title/Summary/Keyword: Implantable

Search Result 326, Processing Time 0.026 seconds

A Development of Eddy Current Sensor System for An Axial-flow type Blood Pump with The Magnetic Bearing (축류형 인공심장의 자기베어링 제어를 위한 와전류 센서 시스템 개발)

  • Ahn, C.B.;Moon, K.C.;Jeong, G.S.;Nam, K.W.;Lee, J.J.;Sun, K.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.310-315
    • /
    • 2007
  • The axial-flow type blood pump(XVAD) which has been developed in our group consists of mechanical parts (an impeller, a diffuser and a flow straightener) and electrical parts (a motor and a magnetic bearing). The magnetic bearing system fully levitates the impeller to remove mechanical coupling with other parts of the pump with constant gap, which needs non-contact type gap sensing. Conventional gap sensors are too large to be adopted to the implantable axial -flow type blood pump. Thus, in this paper, the compact eddy current type gap sensor system proper for the implantable axial-flow type blood pump was developed and its performance was evaluated in vitro. The developed eddy current type gap sensor system is a transformer type and has a differential probe. Sensor coil(probe) has small dimensions(6 mm diameter, 2 mm thickness) and its optimal inductance was determined as 0.068 mH for the measurement range of $0\sim3mm$. It could be manufactured with 130 turns of the 0.04 mm diameter copper coil. The characteristics of the developed eddy current type gap sensor system was evaluated by in vitro experiment. At experiment, it showed satis(actory performance to apply to the magnetic bearing system of the XVAD. It could measure the gap up to 3mm, but the linearity was decreased at the range of $1.8\sim3.0mm$. Moreover, it showed no difference in different media such as the water and the blood at the temperature range of $35\sim40^{\circ}C$.

Design of Capacitive Sensors for Blood Vessel Condition Using FEA Simulation; For Developing of an Implantable Telemetry System to Monitoring the Arterial Change (FEA 시뮬레이션을 이용한 혈관 상태 측정용 커패시티브 센서 설계; 체내 동맥 혈관 변화 모니터링이 가능한 이식형 텔레메트리 시스템 개발을 위한)

  • Kang, So Myoung;Lee, Jae Ho;Wei, Qun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1280-1287
    • /
    • 2019
  • For developing a wireless implantable device to monitoring the artery variation in real-time. The concept of a special vessel variation measurement capacitive sensor is presented in this paper. The sensor consists of two part; main sensor to measuring the arterial variation, and reference sensor is used to improve the accuracy of the capacitance value variation. Before sensor manufacture, a model of the sensor attached on the artery was designed in 3D to conduct in the FEA simulation to validate the validity and feasibility of the idea. The artery model was designed as layered structures and made of collagenous soft tissues with intima inside, followed by the media and the adventitia. Also, a grease layer was designed in the inner of the arterial wall to imitate the clogged arteries. The simulation was divided into two parts; sensor performance test by changing the diameter of the grease layer, and arterial wall tension test by changing the blood pressure. As the simulation results, the capacitance value measured by the proposed sensor is decreased follow the diameter of the grease increased. Also, large elastic deformation of the arterial wall since changing the blood pressure has been observed.

Lumped Model Parameter Estimation of Floating Mass Transducers based on Sequential Quadratic Programming Method for IMEHDs (Sequential Quadratic Programming 방법을 이용한 인공중이용 플로팅 매스 트랜스듀서의 집중 모델 파라미터 추정)

  • Park, I.Y.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.59-64
    • /
    • 2011
  • In this paper, the lumped element model parameter estimation method and its implemented estimation software for fabricated floating mass transducers of IMEHDs have been presented so that the estimated parameter values could be compared with the designed ones and applied to predict the output performance when the transducers were implanted into human ears. The presented method is based on the sequential quadratic programming (SQP) for estimating parameters in the transducer's lumped model and has been implemented by the use of LabVIEW graphical language. Using the implemented estimation software, the accuracy of parameter estimation has been verified and our implemented estimation method has been evaluated by the comparison of the estimated transducer parameter values with the designed ones for a practically fabricated floating mass transducer for IMEHDs.

A Study on the Hermetic Method for Packaging of Implantable Medical Device (생체 이식형 의료기기의 패키징을 위한 완전 밀폐 방법에 관한 연구)

  • Park, Jae-Soon;Kim, Sung-Il;Kim, Eung-Bo;Kang, Young-Hwan;Cho, Sung-Hwan;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.407-412
    • /
    • 2017
  • This paper introduces a biocompatible packaging system for implantable medical device having a hermetic sealing, such that a perfect physical and chemical isolation between electronic medical system and human body (including tissue, body fluids, etc.) is obtained. The hermetic packaging includes an electronic MEMS pressure sensor, power charging system, and bluetooth communication system to wirelessly measure variation of capacitance. The packaging was acquired by Quartz direct bonding and $CO_2$ laser welding, with a size of width $ 6cm{\times}length\;10cm{\times}lheight\;3cm$. Hermetic sealing of the packaged system was tested by changing the pressure in a hermetic chamber using a precision pressure controller, from atmospheric to 900 mmHg. We found that the packaged system retained the same count or capacitance values with sensor 1 - 25,500, sensor 2 - 26,000, and sensor 3 - 20,800, at atmospheric as well as 900 mmHg pressure for 5 hours. This result shows that the packaging method has perfect hermetic sealing in any environment of the human body pressure.

A High Data Rate Medical Implant Communication System Transmitter for Body Implantable Devices (체내이식용 기기를 위한 고속 MICS 송신기 구현)

  • Im, Jun-Ha;Jung, Yun-Ho;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.4
    • /
    • pp.24-31
    • /
    • 2011
  • A high data rate Medical Implant Communications Service (MICS) transmitter for implantable medical devices (IMD) is proposed. An orthogonal frequency division multiplexing (OFDM)-based multicarrier scheme is used to overcome the data rate limitation caused by the narrow bandwidth of 300 kHz. The proposed transmitter utilizes multiple MICS channels simultaneously, supporting increased data rate. To satisfy the MICS regulation, various schemes are applied including optimized subcarrier allocation and inverse fast Fourier transform (IFFT) architecture, and additional sidelobe suppression technique. Simulation results show that the proposed transmitter can support a maximum data rate of 4.86 Mbps, which is more than ten times faster than the previous systems.

Vibration characteristic analysis of differential floating mass transducer using electrical model for fully-implantable middle ear hearing devices (전기 모델에 의한 완전 이식형 인공중이용 차동 전자 트랜스듀서의 진동 특성 해석)

  • Kim, Min-Woo;Kim, Min-Kyu;Seong, Ki-Woong;Lim, Hyung-Gyu;Jung, Eui-Sung;Han, Ji-Hun;Park, Il-Yong;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.165-173
    • /
    • 2007
  • A differential floating mass transducer has been developed in Korea for fully implantable middle ear hearing devices (F-IMEHDs). In particular, the performance of a differential floating mass transducer (DFMT) is very important among the parts of the F-IMEHDs because the mechanical vibration generated by DFMT is delivered to the inner ear directly. In this paper, the electrical model is proposed to analyze the DFMT vibration characteristic using the mechanical model of the DFMT. The electrical model enables the simple analysis of DFMT vibration characteristics using a computer program. The proposed electrical model is simulated through PSpice as changing the values of passive elements in the electrical model. To verify the proposed model, the DFMT has been implemented on the basis of the simulated results and the experiment for vibration measurement has been carried out. Through the comparison, it is verified that the proposed model is useful to analyze the vibration characteristics of the DFMT.

Meta-analysis on risk stratification of malignant ventricular tachyarrhythmic events in arrhythmogenic right ventricular cardiomyopathy

  • Roh, Young-Eun;Jang, Hyun Ji;Cho, Min-Jung
    • Journal of Yeungnam Medical Science
    • /
    • v.34 no.2
    • /
    • pp.208-215
    • /
    • 2017
  • Background: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a cardiomyopathy characterized by predominant right ventricular fibro-fatty replacement, right ventricular dysfunction and ventricular arrhythmias. It is a rare but important cause of sudden cardiac death in children and young adults. A meta-analysis on risk stratification of major ventricular tachyarrhythmic events indicating the need for implantable cardioverter defibrillator therapy in ARVC was performed. Methods: The pubmed database was searched from its inception to May 2015. Of the 433 citations identified, 12 were included in this meta-analysis. Data regarding major ventricular tachyarrhythmic events were retrieved in 817 subjects from the studies. For the variables, a combined odds ratio (OR) was calculated using a fixed-effects meta-analysis. Results: Extensive right ventricular dysfunction (OR, 2.44), ventricular late potential (OR, 1.66), inducible ventricular tachyarrhythmia during electrophysiology study (OR, 3.67), non-sustained ventricular tachycardia (OR, 3.78), and history of fatal event/sustained VT (OR, 5.66) identified as significant risk factors (p<0.0001). Conclusion: This meta-analysis shows that extensive right ventricular dysfunction, ventricular late potential, inducible ventricular tachyarrhythmia during electrophysiological study, non-sustained ventricular tachycardia, and history of sustained ventricular tachycardia/fibrillation are consistently reported risk factors of major ventricular tachyarrhythmic events indicating implantable cardioverter defibrillator therapy in patients with ARVC.

Implantable Nerve Cuff Electrode with Conductive Polymer for Improving Recording Signal Quality at Peripheral Nerve (말초 신경 신호 기록의 효율성 개선을 위한 전도성 폴리머가 적용된 생체삽입형 커프형 신경전극)

  • Park, Sung Jin;Lee, Yi Jae;Yun, Kwang-Seok;Kang, Ji Yoon;Lee, Soo Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • This study demonstrates a polyimide nerve cuff electrode with a conductive polymer for improving recording signal quality at peripheral nerve. The nerve cuff electrodes with platinum (Pt), iridium oxide (IrOx), and poly(3,4-ethylenedioxythiophene): p-toluene sulfonate (PEDOT:pTS) were fabricated and investigated their electrical characteristics for improving recorded nerve signal quality. The fabricated nerve cuff electrodes with Pt, IrOx, and PEDOT:pTS were characterized their impedance and CDC by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The impedance of PEDOT:pTS measured at 1 kHz was $257{\Omega}$, which was extremely lower than the value of the nerve cuff electrodes with IrOx ($15897{\Omega}$) and Pt ($952{\Omega}$), respectively. Furthermore, the charge delivery capacity (CDC) of the nerve cuff electrode with PEDOT:pTS was dramatically increased to 62 times than the nerve cuff electrode with IrOx. In ex-vivo test using extracted sciatic nerve of spaque-dawley rat (SD rat), the PEDOT:pTS group exhibited higher signal-to-interference ratio than IrOx group. These results indicated that the nerve cuff electrode with PEDOT:pTS is promising for effective implantable nerve signal recording.

Atrial pacemaker implantation through left subclavian vein puncture (쇄골하정맥을 이용한 J 형의 전극도자를 가진 심방 Pacemaker 이식치험 2예)

  • Lee, Du-Yeon;Hong, Seung-Rok;Lee, Ung-Gu
    • Journal of Chest Surgery
    • /
    • v.16 no.2
    • /
    • pp.190-198
    • /
    • 1983
  • The management of cardiac arrhythmias by cardiac pacing has increased greatly since the treatment of complete heart block with an external transcutaneous pacemaker in 1952, followed by the use of myocardial wires connected to an external pulse generation, by external transvenous pacing, and then by transvenous pacing with implantable components in thoracic wall.By now, the three bases of modern cardiac pacing for bradyarrhythmias had been established [1] an implantable device [2] the transvenous approach [3] the ability of the pacemaker to sense cardiac activity and modify its own function accordingly. In transvenous implantation of a pacemaker, any one of four vessels at the root of the neck is suitable for passage of the electrode - cephalic vein, external jugular vein, internal jugular vein, costo-axillary branch of the axillary vein. The new technique of direct puncture of the subclavian vein, either percutaneously or after skin incision only has been made, is invaluable & is used routinely. We have experienced one 25 years old patient who had rheumatic mitral stenosis & minimum aortic regurgitation with sinus bradycardia associated with premature atrial tachycardia & another 54 years old female patient who was suffered from sick sinus syndrome with sinus bradycardia & sinus arrest. The 1st patient was taken open mitral commissurotomy & aortic valvuloplasty and then was taken atrlal pace-maker implantation through If subclavian puncture method in post-op 14 days, and the second patient was taken atrial pacemaker implantation through If subclavian puncture method. Their postop course was in uneventful & were discharged, without complication. Their condition have been good to now.

  • PDF

Manufature of Telemetry System for Multiple Subjects Using CMOS Custom IC (전용 CMOS IC에 의한 다중 생체 텔레미트리 시스템 제작)

  • Choi, Se-Gon;Seo, Hee-Don;Park, Jong-Dae;Kim, Jae-Mun
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 1996
  • This paper presents a manufacture of the multiple subjects biotelemetry system using custom CMOS IC fabricated $1.5{\mu}m$ n-well process technology. The implantable circuits of the system except sensor interface circuits including FM transmitter are fabricated on a single chip with the sire of $4{\times}4mm^{2}$. It is possible to assemble the implantable system in a hybrid package as small as $3{\times}3{\times}2.5cm$ by using this chip, It's main function is to enable continuous measurement simultaneously up to 7-channel physiological signals from the selected one among 8 subjects. Another features of this system are to enable continuous measurement of physiological signals, and to accomplish ON/OFF switching of an implanted battery by subject selection signal with command signal from the external circuit. If this system is coupled with another appropriate sensors in medical field, various physiological parameters such as pressure, pH and temperature are to be measured effectively in the near future.

  • PDF