• Title/Summary/Keyword: Implantable

Search Result 313, Processing Time 0.025 seconds

Low-Power 4th-Order Band-Pass Gm-C Filter for Implantable Cardiac Pacemaker (이식형 심장 박동 조절 장치용 저 전력 4차 대역통과 Gm-C 필터)

  • Lim, Seung-Hyun;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • Low power consumption is crucial for medical implantable devices. A low-power 4th-order band-pass Gm-C filter with distributed gain stage for the sensing stage of the implantable cardiac pacemaker is proposed. For the implementation of large-time constants, a floating-gate operational transconductance amplifier with current division is employed. Experimental results for the filter have shown a SFDR of 50 dB. The power consumption is below $1.8{\mu}W$, the power supply is 1.5 V, and the core area is $2.4\;mm{\times}1.3\;mm$. The filter was fabricated in a 1-poly 4-metal $0.35-{\mu}m$ CMOS process.

Design of 3-Tier Security Mechanism for Improving Security of the Implantable Medical Devices (체내 이식형 의료기기의 보안성 향상을 위한 3-Tier 보안 메커니즘 설계)

  • Ahn, Seung-Hyun;Park, Chang-Seop;Park, Joo-Ho
    • Convergence Security Journal
    • /
    • v.14 no.3_1
    • /
    • pp.11-19
    • /
    • 2014
  • As both medical and IT technologies advance, convergent medical technologies such as implantable medical devices are receiving a lot of attentions from the research and medical appliance market. On the other hand, such a new medical service is facing several new security threats including patient privacy breach since the service is based on the wireless communication. Especially, the new security threat could induce the patient's life threatening accident, so that more secure measures should be provided. In this paper, a variety of security threats associated with the implantable medical devices are pinpointed and a new security mechanism against such threats is proposed.

The Development of Neuromuscular Electrical Stimulation Medical Devices for The Treatment of Non-implantable Urinary Incontinence (비이식형 요실금 치료용 신경근 전기자극 의료기기 개발)

  • Lee, Jae-Yong;Lee, Chang-Doo;Kwon, Ki-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • In this paper, the neuromuscular electrical stimulation medical devices for non-implantable incontinence treatment other than vaginal insertion type was developed and commercialized. The structure of medical devices for electrical stimulation based on the anatomy of the pelvic floor muscle designed. Then, the optimum parameters that may be effective in pelvic floor muscle electrical stimulation was set. The circuit system based on the optimum parameters were designed and manufactured. The frequency of the pulse voltage for electrical stimulation is 75[Hz], the pulse width is 300[${\mu}s$], the development of medical devices was to have seven program functions to the various treatments. The circuit system of medical devices was composed of microcontroller, comparator and converter. The performance of the developed circuit system in KTC(Korea Testing Certification) were carried out medical equipment inspection test. Test results, test specifications were satisfied with the medical device, the performance was verified to be commercialized as a medical device. The development of medical devices were validated risk assessment and product performance through a software validation. Commercialization of medical equipment was acquired to enable the certification standards of the international standard IEC 60601-1.

Complete Fracture of Totally Implantable Venous Catheter (완전 거치형 정맥도관의 완전 절단)

  • Kim, Jung-Tae;Chang, Woon-Ha;Oh, Tae-Yoon
    • Journal of Chest Surgery
    • /
    • v.39 no.12 s.269
    • /
    • pp.946-948
    • /
    • 2006
  • The patient was a 42-year-old female with breast cancer who had an implantable central venous catheter inserted percutaneously into left subclavian vein for chemotherapy. The postinsertion chest x ray revealed that there was no compressive sigh of catheter. Three months after insertion of the catheter, the patient was admitted to the hospital for 4th chemotherapy. The port was accessed but blood could not be aspirated and the catheter could not be flushed. A chest x ray revealed that the catheter was completely transected at the point where the catheter passed under the clavicle. Percutaneous removal of the distal fragment of the catheter was accomplished. The patient was discharged after successful removal of fragment of catheter.

Development of Transcutaneous Energy Transmission System for Implantable Devices (생체 이식형 무선에너지 전송 시스템 개발)

  • Yoo Dong-Soo;Lee Joon-Ha;Seo Hee-Don;Lee Sang-Hag
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.155-159
    • /
    • 2005
  • As a part of implantable device in body, a transcutaneous energy transmission system has been developed. It would be desirable to tansfer electrical energy to implantable devices transcutaneously. The distance between transcutaneous transformer windings are approximately equal to the thickness of the human's skin, nominally between 10$\~$20 mm. Class-E resonant amplifier is used to drive a primary coil for high efficiency. Maximum current is above 50 mA at any frequency. The developed system shows that the circuit operates correctly at each frequency; 500 kHz, 1 MHz and 4 MHz.

  • PDF

Fabrication and Evaluation of the Flexible and Implantable Micro Electrode (생체 삽입형 유연한 마이크로 전극의 제작 및 평가)

  • Baek Ju-Yeoul;Kwon Gu-Han;Lee Sang-Woon;Lee Ky-Am;Lee Sang-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.2
    • /
    • pp.93-99
    • /
    • 2006
  • In this paper, we fabricated and evaluated polydimethylsiloxane(PDMS)-based flexible and implantable micro electrodes. The electrode patterning was carried out with the photolithography and chemical etching process after e-beam evaporation of 100 ATi and 1000 A Au. The PDMS substrate was treated by oxygen plasma using reactive ion etching(RIE) system to improve the adhesiveness of PDMS and metal layers. The minimum line width of fabricated micro electrode was 20 $\mu$m. After finished patterning, we did packaging with PDMS and then brought up the electrode's part about 40 $\mu$m with gold electroplating. The Hank's balanced salt solution(HBSS) test was carried out for 6 month for endurance of fabricated micro electrode. We carried out in-vivo test for the evaluation of biocompatibility by implanting electrodes under the ICR mouse skin for 42 days.

Design of Implantable Transducer for Middle Ear Hearing Aid (이식형 중이용 청각보조 트랜스듀서의 설계)

  • Park, H.O.;Song, B.S.;Won, C.H.;Park, S.K.;Lee, S.H.;Cho, J.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.243-247
    • /
    • 1996
  • Electro-magnetic type implantable middle ear hearing aid has been empirically developed. But for further improvement of the system performance more quantitative approach is necessary. In this paper, we analyzed vibrating transducer which is most important to design the system, appropriate for given hearing level, and implemented it. Using this transducer, implantable hearing aid system are developed. To verify the design process, we experimented with driving metal strip by the developed system. From the experiment, frequency response of implemented device showed good characteristic at audio frequency and we confirmed that each part of the developed system operated well.

  • PDF

Design and Fabrication of Implantable LC Resonant Blood Pressure Sensor (인체 삽입용 LC 공진형 혈압 센서 디자인 및 제작)

  • Kim, Jin-Tae;Kim, Sung Il;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.171-176
    • /
    • 2013
  • In this paper, we present a MEMS (micro-electro-mechanical system) implantable blood pressure sensor which has designed and fabricated with consideration of size, design flexibility, and wireless detection. Mechanical and electrical characterizations of the sensor were obtained by mathematical analysis and computer aided simulation. The sensor is composed of two coils and a air gap capacitor formed by separation of the coils. Therefore, the sensor produces its resonant frequency which is changed by external pressure variation. This frequency movement is detected by inductive coupling between the sensor and an external antenna coil. Theoretically analyzed resonant frequency of the sensor under 760 mmHg was calculated to 269.556 MHz. Fused silica was selected as sensor material with consideration of chemical and electrical reaction of human body to the material. $2mm{\times}5mm{\times}0.5mm$ pressure sensors fitted to radial artery were fabricated on the substrates by consecutive microfabrication processes: sputtering, etching, photolithography, direct bonding and laser welding. Resonant frequencies of the fabricated sensors were in the range of 269~284 MHz under 760 mmHg pressure.

A Physical Ear Model for Evaluating Hybrid-acoustic Sensor Characteristics of Fully Implantable Middle-ear Hearing Aid (완전 이식형 인공중이의 하이브리드 음향센서 특성 평가를 위한 귀 물리모델)

  • Shin, Dong Ho;Moon, Ha Jun;Kim, Myoung Nam;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.923-929
    • /
    • 2019
  • In this paper, biomimetic based physical ear model proposed for measuring the characteristics of a hybrid-acoustic sensor for fully implantable middle-ear hearing aid. The proposed physical ear model consists of the external ear, middle-ear, and cochlea. The physical ear model was implemented based on the anatomical structure and CT images of the human ear. To confirm the characteristics of the ear model, the vibrational characteristics of the stapes was measured after applying sound pressure to the tympanic membrane. The measured results were compared with the vibrational characteristics of the human temporal bone specified by ASTM F2504-05. Through the comparison results, the feasibility of the proposed ear model was confirmed. Then, after attaching the hybrid-acoustic sensor to the ear model, the output characteristics of the ECM and acceleration sensor were measured according to the sound pressure. The measured results were compared with previous studies using human temporal bone, and the usefulness of the proposed physical ear model was verified through the analysis results.

General anesthesia using propofol infusion for implantation of an implantable cardioverter defibrillator in a pediatric patient with Andersen-Tawil syndrome: a case report

  • Seyeon Park;Wonjae Heo;Sang-Wook Shin;Hye-Jin Kim;Yeong Min Yoo;Hee Young Kim
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.1
    • /
    • pp.45-51
    • /
    • 2023
  • Andersen-Tawil syndrome (ATS) is a rare genetic disease characterized by a triad of episodic flaccid muscle weakness, ventricular arrhythmias, and physical anomalies. ATS patients have various cardiac arrhythmias that can cause sudden death. Implantation of an implantable cardioverter-defibrillator (ICD) is required when life-threatening cardiac arrhythmias do not respond to medical treatment. An 11-year-old girl underwent surgery for an ICD implantation. For general anesthesia in ATS patients, anesthesiologists should focus on the potentially difficult airway, serious cardiac arrhythmias, such as ventricular tachycardia (VT), and delayed recovery from neuromuscular blockade. We followed the difficult airway algorithm, avoided drugs that can precipitate QT prolongation and fatal cardiac arrhythmias, and tried to maintain normoxia, normocarbia, normothermia, normoglycemia, and pain control for prevention of sympathetic stimulation. We report the successful application of general anesthesia for ICD implantation in a pediatric patient with ATS and recurrent VT.