• 제목/요약/키워드: Implant superstructure

검색결과 54건 처리시간 0.026초

Study of screw loosening in cementation type implant abutment

  • Hwang, Bo-Yeon;Kim, Yung-Soo;Kim, Chang-Whe
    • 대한치과보철학회지
    • /
    • 제38권6호
    • /
    • pp.765-781
    • /
    • 2000
  • The purpose of this study was to compare the screw loosening characteristics of three avail-able cementation type abutments: one-piece cementation type abutment; two-piece cementation type abutment using titanium abutment screw; two-piece cementation type abutment using gold abutment screw. Two implant supported three-unit superstructures were fabricated using a pair of 3 kinds of abutments for each experimental model. Cyclic loading was applied on the specimen, and made to stop when the superstructure showed movement over threshold range. The loaded cycle was counted until the machine stopped. Frequency analysis was done to measure the change of natural frequency before and after the application of cyclic load and to find the effect of screw loosening on the change of natural frequency. The specimen assembly was modeled to perform the finite element analysis to see the distribution of the stress induced by the application of preload over the screw joint and to compare the pattern of the distribution of stress induced by the external force with the change of the preload condition. The following results were obtained: 1. The failure loading cycle of two-piece cementation type abutment using gold screw was significantly greater than those of the other groups. 2. One-piece cementation type abutment applied to multi-unit restoration case did not show greater resistance to screw loosening compared to two-piece cementation type abutments. 3. Frequency analysis showed decrease in natural frequency when screw loosening occured.

  • PDF

고정성 보철치료에서 골유착성 임프란트의 경사도변화에 따른 변위와 응력에 관한 유한요소적 연구 (A FINITE ELEMENT ANALYSIS ON THE 3-UNIT FIXED PROSTHESIS SUPPORTED WITH A NATURAL TOOTH AND ANGLE VARIABLE IMPLANT)

  • 고현;우이형;박남수
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.580-610
    • /
    • 1993
  • The purpose of this study was to analyse the deflection and stress distribution at the supporting bone and it's superstructure by the alteration of angulation between implant and it's implant abutment. For this study, the free-end saddle case of mandibular first and second molar missing would be planned to restore with fixed prosthesis. So the mandibular second premolar was prepared for abutment, and the cylinder type osseointegrated implant was placed at the site of mandibular second molar for abutment. The finite element stress analysis was applied for this study. 13 two-dimensional FEM models were created, a standard model at $0^{\circ}$ and 12 models created by changing the angulation between implant and implant abutment as increasing the angulation mesially and distally with $5^{\circ}$ unittill $30^{\circ}$. The preprocessing decording, solving and postprocessing procedures were done by using FEM analysis software PATRAN and SUN-SPARC2GX. The deflections and von Mises stresses were calculated under concentrated load (load 1) and distributed load(load 2) at the reference points. The results were as follows : 1. Observing at standard model, the amount of total deflection at the distobuccal cusp-tip of pontic under concentrated load was largest of all, and that at the apex of implant was least of all, and the amount of total deflection at the buccal cusp-tip of second premolar under distributed load was largest of all, and that at the apex of implant was least of all. 2. Increasing the angulation mesially or distally, the amounts of total deflection were increased or decreased according to the reference points. But the order according to the amount of total deflection was not changed except apex of second premolar and central fossa of implant abutment under concentrated load during distal inclination. 3. Observing at standard model, the von Mises stress at the distal joint of pontic under concentrated load was largest of all, and that at the apex of implant was least of all. The von Mises stress at the distal margin of second premolar under distributed load was largest of all, and that at the apex of Implant was least of ail. 4. Increasing the angulation of implant mesially, the von Mises stresses at the mesial crest of implant were increased under concentrated load and distributed load, but those were increased remarkably under distributed load and so that at $30^{\circ}$ mesial inclination was largest of all. 5. Increasing the angulation of implant distally, the von Mises stresses at the distal crest of implant were increased remarkably under concentrated load and distributed load, and so those at $30^{\circ}$ distal inclination were largest of all.

  • PDF

골내 임프란트를 이용한 고정성 국소의치 하에서 변위 및 응력에 관한 유한요소법적 분석 (FINITE ELEMENT ANALYSIS OF STRESSES AND DEFLECTIONS INDUCED BY FIXED PARTIAL DENTURE USING ENDOSTEAL IMPLANT)

  • 최수호;정재헌
    • 대한치과보철학회지
    • /
    • 제29권1호
    • /
    • pp.233-248
    • /
    • 1991
  • The purpose of this study was to qunatatively analyze the stress patterns induced in the abutment, superstructure, supporting bone and to determine the deflection of abutment and superstructure by appling occlusal force to natural teeth supported fixed prostheses and implant-supported fixed prostheses. The analysis has been conducted by using the two dimensional finite element method. The implant and natural tooth-supported bridge has a first molar pontic supported by mandibular second bicuspid and implant posterior retainer, which were rigidly(Model A) or flexible(Model B). The natural teeth-supported bridge has a first molar pontic supported by mandibular second bicuspid and second molar, which were rigidly splinted together(Model C). 63.5kg(Load P1) of localized load on central fossa of first molar pontic and 24kg(Load P2) of distributed load on each occlusal surface were applied respectively. 1. The coronal portion of premolar pontic and posterior abutment in fixed partial denture deflected inferiorly in order of Model B, Model C and Model A under Load P1 and Load P2. 2. Mesial displacement of the coronal portion of premolar showed in Model A, Model B and Model C under Load P1, but mesial displacement of that in Model B and distal displacement of that in Model A and Model C showed under Load P2. 3. Mesial displacement of the coronal portion of the pontic and distal displacement of the coronal portion of posterior abutment showed in Model A, Model B and Model C under Load P1 and Load P2. Displacement in the case of Model B was greater than that of Model A and Model C. 4. In the case Model A under Load P1 and Load P2, high stress apically was concentrated in the mesiocervical portion of the posterior abutment than in the disto-cervical portion of the premolar. 5. In the case of Model B under Load P1 and Load P2 high stress was concentrated in the case of the premolar than in that of posterior abutment and high stress especially was concentrated in the connected portion of pontic and posterior abutment. 6. In the case of Model C under Load P1 and Load P2, high stress was concentrated in the distal area of the cornal portion of premolar and the mesial area of the coronal portion of posterior abutment, and stress pattern was anteroposterially symmetric around the pontic. 7. Load P1 and Load P2 compared, stress magnitude was different but stress pattern was similar in Model A, Model B and Model C. 8. Under Load P1 and P2, stress magnitude in the mesial distal portion and the portion of root apex of the posterior abutment was in order of Model B, Model A and Model C.

  • PDF

나사형 임플란트 고정체의 길이, 직경, 플랫폼 형태에 따른 임플란트와 주위조직의 응력분포 (Influence of diameter, length, and platform shape of implant fixture on the stress distribution in and around the screw type implant)

  • 강지은;정현주;구철회;양홍서
    • 구강회복응용과학지
    • /
    • 제18권4호
    • /
    • pp.277-288
    • /
    • 2002
  • Seven finite element models were constructed in mandible having single screw-type implant fixture connected to the premolar superstructure, in order to evaluate how the length, diameter and platform shape of a screw-type fixture influence the stress in the supporting tissue around fixtures. Each finite element model was varied in terms of length, diameter, and platform shape of the fixture. In each model, 250N of vertical load was placed on the central pit of an occlusal plane and 250N of oblique load placed on the buccal cusp. The stress distribution in the supporting tissue and the other components was analysed using 2-dimensional finite element analysis and the maximum von Mises stress in each reference area was compared. Under lateral loading, the stress was larger at the abutment/fixture interface, and in the crestal bone, compared to the stress pattern under vertical loading. The amount of stress at the superstructure was similar regardless of the length, diameter and platform shape of a fixture. Around the longer fixture, the stress was decreased at the bone crest and subjacent cancellous bone and increased in the cancellous bone area apical to the fixture. Around the wider fixture, the stress was decreased at the abutment/fixture interface, and the bone crest and increased in the cancellous bone area apical to the fixture. Around the fixture having wider platform, less stress was produced at the abutment/fixture interface and the upper part of the cortical bone, compared to the fixture having standard platform. In conclusion, the stress distribution of the supporting tissue was affected by length, diameter, and platform shape of a fixture, and the fixture which was larger in diameter and length could reduce the stress in the supporting tissues at the bone-fixture interface and bone crest area.

인상채득방법이 임플란트 주모형의 정확성에 미치는 영향 (EFFECT OF IMPRESSION TECHNIQUE ON THE ACCURACY OF MASTER CAST FOR IMPLANT PROSTHESIS)

  • 김영오;양홍서
    • 대한치과보철학회지
    • /
    • 제42권2호
    • /
    • pp.238-247
    • /
    • 2004
  • Statement of problem: Major objective in making on implant-supported prosthesis is the production of superstructure that exhibits a passive fit when connected to multiple abutments. One requirement to ensure passive fit is to make an accurate impression. Purpose : The purpose of this study was to compare the accuracy of master cast fabricated by using different impression methods at the different impression levels. Material and method: The master model used in this study was resin block having low implant analogs. Impression method studied were 1) direct method on fxiture level (Group FIX-D), 2) indirect method on fixture level(Group FIX-I), 3) modified indirect method on fixture level(Group FIX-M), 4) direct method on abutment level(Group AB-D) and 5) indirect method on abutment level(Group AB-I). Each of the five groups took 10 impressions. Fifty impressions were made for master cast by using Impregum $F^{(R)}$ impression material loaded on individual tray. Three dimensional measuring microscope was used to measure the inter-implant distance. Error rate of each inter-implant distance were calculated and evaluated. Results : The results were as follows. 1. Group FIX exhibited higher accuracy than group AB. 2. In group FIX, modified indirect method showed the highest accuracy, while indirect method showed the lowest accuracy. In group Ab, indirect method showed the higher accuracy than direct method. 3. Group FIX showed larger horizontal error than group AB. But, group AB showed the larger vertical error than group FIX. 4. Group Fix-M showed smallest vertical and horizontal error. Conclusion: An impression method have more effect on accuracy of master model than an impression level. A modified indirect method showed smallest vertical and horizontal error.

임플랜트 보철물의 나사구멍 봉쇄방법이 지대나사 풀림에 미치는 영향에 관한 연구 (THE EFFECT OF SCREW HOLE SEALING METHOD ON ABUTMENT SCREW LOOSENING IN DENIAL IMPLANT)

  • 임재빈;임순호;조인호
    • 대한치과보철학회지
    • /
    • 제35권4호
    • /
    • pp.767-780
    • /
    • 1997
  • One of the most common problems of implant prosthesis is the screw loosening of abutment screws. This brings on discomfort in mastication, inflammation in the peri-implant tissue due to poor oral hygiene and fracture of prosthesis or loss of osseointegration. To prevent screw loosening, appropriate implantation to direct the occlusal force to the long axis of the implant, accurate design of the superstructure, decrease of the occlusal table, and adequate torque on the abutment screw are necessary. In this study the screw loosening torque was evaluated in implants with dimples or flutes in the internal surface of abutment screw holes. The abutments were fastened with slot type and hexagonal type abutment screws and were sealed with vinyl poly siloxane impression and bite registration material respectively. The screw loosening torque was evaluated after 1,800 and 12,600 times loading under a loading machine. The results were as follows. 1. The flute form group showed significantly higher loosening torque compared to the dimple form group and the group with no inner surface treatment (p<0.05). 2. There was no statistical difference in loosening torque according to the sealing materials. 3. The loosening torque according to the types of abutment screw showed no significant difference. 4. The loosening torque was significantly higher after 1800 times loading compared to 12600 times loading(p<0.05). From the above results. it is thought that formation of a flute in the internal surface of the screw hole decreases the chance of screw loosening, but the sealing materials and types of abutment screw did not show significant difference in prevention of screw loosening.

  • PDF

COMPARATIVE STUDY ON THE FRACTURE STRENGTH OF METAL-CERAMIC VERSUS COMPOSITE RESIN-VENEERED METAL CROWNS IN CEMENT-RETAINED IMPLANT-SUPPORTED CROWNS UNDER VERTICAL COMPRESSIVE LOAD

  • Pae, Ahran;Jeon, Kyung-A;Kim, Myung-Rae;Kim, Sung-Hun
    • 대한치과보철학회지
    • /
    • 제45권3호
    • /
    • pp.295-302
    • /
    • 2007
  • Statement of problem. Fracture of the tooth-colored superstructure material is one of the main prosthetic complications in implant-supported prostheses. Purpose. The purpose of this in vitro study was to compare the fracture strength between the cement-retained implant-supported metal-ceramic crowns and the indirect composite resinveneered metal crowns under the vertical compressive load. Material and methods. Standard implants of external type (AVANA IFR 415 Pre-mount; Osstem Co., Busan, Korea) were embedded in stainless steel blocks perpendicular to their long axis. Customized abutments were fabricated using plastic UCLA abutments (Esthetic plastic cylinder; Osstem Co., Busan, Korea). Thirty standardized copings were cast with non-precious metal (Rexillium III, Pentron, Walling ford, Conn., USA). Copings were divided into two groups of 15 specimens each (n = 15). For Group I specimens, metal-ceramic crowns were fabricated. For Group II specimens, composite resin-veneered (Sinfony, 3M-ESPE, St. Paul, MN, USA) metal crowns (Sinfony-veneered crowns) were fabricated according to manufacturer's instructions. All crowns were temporary cemented and vertically loaded with an Instron universal testing machine (Instron 3366, Instron Corp., Norwood, MA, USA). The maximum load value (N) at the moment of complete failure was recorded and all data were statistically analyzed by independent sample t-test at the significance level of 0.05. The modes of failure were also investigated with visual analysis. Results. The fracture strength of Sinfony-veneered crowns ($2292.7{\pm}576.0N$) was significantly greater than that of metal-ceramic crowns ($1150.6{\pm}268.2N$) (P < 0.05). With regard to the failure mode, Sinfony-veneered crowns exhibited adhesive failure, while metal-ceramic crowns tended to fracture in a manner that resulted in combined failure. Conclusion. Sinfony-veneered crowns demonstrated a significantly higher fracture strength than that of metal-ceramic crowns in cement-retained implant-supported prostheses.

하악 임플란트 overdenture에서 anchorage system이 하중전달에 미치는 영향 (EFFECT OF ANCHORAGE SYSTEMS ON LOAD TRANSFER WITH MANDIBULAR IMPLANT OVERDENTURES : A THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS)

  • 김진열;전영찬;정창모
    • 대한치과보철학회지
    • /
    • 제40권5호
    • /
    • pp.507-524
    • /
    • 2002
  • Load transfer of implant overdenture varies depending on anchorage systems that are the design of the superstructure and substructure and the choice of attachment. Overload by using improper anchorage system not only will cause fracture of the framework or screw but also may cause failure of osseointegration. Choosing anchorage system in making prosthesis, therefore, can be considered to be one of the most important factors that affect long-term success of implant treatment. In this study, in order to determine the effect of anchorage systems on load transfer in mandibular implant overdenture in which 4 implants were placed in the interforaminal region, patterns of stress distribution in implant supporting bone in case of unilateral vertical loading on mandibular left first molar were compared each other according to various types of anchorage system using three-dimensional photoelastic stress analysis. The five photoelastic overdenture models utilizing Hader bar without cantilever using clips(type 1), cantilevered Hader bar using clips(type 2), cantilevered Hader bar with milled surface using clips(type 3), cantilevered milled-bar using swivel-latchs and frictional pins(type 4), and Hader bar using clip and ERA attachments(type 5), and one cantilevered fixed-detachable prosthesis(type 6) model as control were fabricated. The following conclusions were drawn within the limitations of this study, 1. In all experimental models. the highest stress was concentrated on the most distal implant supporting bone on loaded side. 2. Maximum fringe orders on ipsilateral distal implant supporting bone in a ascending order is as follows: type 5, type 1, type 4, type 2 and type 3, and type 6. 3. Regardless of anchorage systems. more or less stresses were generated on the residual ridge under distal extension base of all overdenture models. To summarize the above mentioned results, in case of the patients with unfavorable biomechanical conditions such as not sufficient number of supporting implants, short length of the implant and unfavorable antero-posterior spread. selecting resilient type attachment or minimizing distal cantilever bar is considered to be appropriate methods to prevent overloading on implants by reducing cantilever effect and gaining more support from the distal residual ridge.

밀링 및 3D 프린팅 방법으로 제작된 임플란트 보철물을 이용한 심한 우식 환자의 완전 구강 회복 증례 (Full mouth rehabilitation of patient with severe dental caries with implant fixed prosthesis fabricated with milling and 3D printing method: A case report)

  • 김태윤;이준석;홍성진;김형섭;권긍록
    • 대한치과보철학회지
    • /
    • 제57권3호
    • /
    • pp.288-295
    • /
    • 2019
  • 임플란트 지지 보철물의 'passive fit'은 보철물의 장기적인 성공과 합병증의 최소화에 핵심적인 요소이다. 그리고 이 요소는 보철물의 제작과정에 의해 대부분 결정된다. 전통적인 주조 방식은 금속의 수축 변형이 발생하여 광범위한 임플란트 보철물에 적용하는데 제한이 있었다. 그러나 Computer-aided design/Computer-aided manufacture (CAD/CAM) 밀링 방식과 3D 프린팅 방식을 사용하면 이러한 한계점을 극복할 수 있다. 본 증례는 광범위한 임플란트 보철물을 사용한 완전 구강 회복 증례이다. 가철성 임시 보철물을 제작하여 심미와 기증을 평가하고 임플란트 식립을 위한 가이드로 사용하였다. 임플란트 식립 후, 임플란트 고정성 임시 보철물이 장착되었다. 추가적인 평가와 조정 후, 최종 보철물이 CAD를 사용하여 설계되었고, CAM을 사용하여 제작되었다. 전치부 임플란트의 나사 유지형 상부구조물은 밀링되어 제작되었고, 전치부 및 구치부 금속도재관의 금속구조물은 3D 프린팅되어 제작되었다. 보철물은 양호한 적합도를 보였고 술자와 환자 모두 증례의 최종 결과에 심미적, 기능적으로 만족하였다.

저작압이 임프란트 주위골 내 응력분포에 미치는 영향에 관한 연구 (AN ANALYSIS OF STRESS DISTRIBUTION AROUND THE IMPLANT ACCORDING TO THE BONE QUALITY AND BITE FORCE: FINITE ELEMENT METHOD)

  • 현기봉;이선형;장익태;양재호;신상완
    • 대한치과보철학회지
    • /
    • 제39권4호
    • /
    • pp.391-409
    • /
    • 2001
  • Since the early study about the osseointegration, lots of researches have been performed to increase the success rate and the stress around the implant in the jaw bone has been considered as one of the causes of failure. The purpose of this study was to examine the relationship between the implant failure and the stress by analysing the influence of different bone quality and bite force of some foods on the stress distribution around the implant, and to estimate the treatment result according to the bone quality and dietary pattern of patients. Bone quality was divided in 4 groups and models were drawn with the assumption that thread type implant(Nobel Biocare AB, Goteborg, Sweden) of 3.75mm diameter, 13mm length was installed to the bones. Various bite forces were applied to the occlusal surface of superstructure and the stress distributed around the implant were analysed with finite element analysis program. The results were as follows ; 1. The stress was changed proportionally to the bite forces of foods at all measuring points in all load cases. 2. The stress at the marginal bone was higher than that of the other measuring points in all load cases, and it was decreased at the first thread area. 3. The stress at the marginal bone was highest in type IV bone in all load cases. Especially it was twice those of other bone types at the bucco-lingual marginal bone and 50% higher at the mesio-distal marginal bone. 4. The stress at the bucco-lingual sides of the bone around the apical portions of implant showed little differences among the bone types, while type IV bone showed lower stress concentration than the other bone types in the mesio-distal sides. 5. Under the buccal oblique load ($15^{\circ}$ ), the stress at the lingual marginal bone was higher than that of buccal marginal bone, and the difference between the two points was almost same regardless of bone types.

  • PDF