• Title/Summary/Keyword: Implant fracture

Search Result 307, Processing Time 0.103 seconds

Fracture Analysis of Implant Components using Scanning Electron Microscope - Part I : Implant Fixture (임플란트 구성요소의 파절면에 관한 주사전자현미경적 연구 - Part I: 임플란트 고정체)

  • Lim, Kwang-Gil;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.297-309
    • /
    • 2010
  • The objective of the present study was to perform a fracture analysis on fractured implant fixture after use in vivo and make clear the cause & mechanisms of failure. In case of fatigue fracture, the fractured surface represents fatigue striation. Fatigue striation indicate the progression of the crack front under cyclic loading, are characteristic of stage 2 crack growth. The site of crack initiation and stage 1 crack growth were not easily identified in any of the failure, presumably because of the complex microstructural features of the polycrystalline sample. In case of fractured by overload, dimpled or cleavage surface were observed. Using the interpretation of characteristic markings(ratchet mark, fatigue striation, dimple, cleavage et al) in fracture surfaces, failure events containing the crack origin, crack propagation, material deficiency could be understand.

Effect of morphology and diameter of implant fixture-abutment connection on mechanical failure of implants (임플랜트 고정체-지대주 연결부의 형태와 직경이 임플랜트의 기계적 실패에 미치는 영향)

  • Yun, Bo-Hyeok;Shin, Hyon-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo;Kang, Eun-Sook
    • The Journal of the Korean dental association
    • /
    • v.53 no.9
    • /
    • pp.644-655
    • /
    • 2015
  • Purpose: This study was conducted to evaluate the effect of the fixture abutment connection type and diameter on the screw joint stability in external butt joint for 2nd surgery and internal cone connected type implant system for 1st and 2nd surgery using ultimate fracture strength. Materials and Methods: USII system, SSII system and GSII system of Osstem Implant were used. Each system used the fixture with two different diameters and cement-retained abutments, and tungsten carbide / carbon coated abutment screws were used. Disc shaped stainless steel metal tube was attached using resin-based temporary cement. The experimental group was divided into seven subgroups, including the platform switching shaped specimen that uses a regular abutment in the fixture with a wide diameter in USII system. A static load was increased to the metal tube at 5mm deviated point from the implant central axis until it reached the compression bending strength at a rate of 1mm/min. Then the deformations and patterns of fracture in threaded connection were compared. Results and Conclusion: 1. In the comparison between the Regular diameter, compression bending strength of SSII system was higher than USII system and GSII system. There was no significant difference between USII system and GSII system. 2. In the comparison between wide diameter, compression bending strength was increased in the order of GSII system, USII system, and SSII system. 3. In comparison between the implant diameter, compression bending strength of the wide diameter was greater than the regular diameter in any system(P<0.05). 4. There was no significant difference between the platform switching (III group) and the regular diameter (I group) in USII system. 5. In USII system, fracture of abutment screw and deformation of both fixture and abutment were observed in I, II and III subgroups. 6. Failure pattern of SSII system, which was the fracture of abutment screw and deformation of the abutment and fixture, was observed in both IV and V subgroups. Fracture of some fixtures was observed in subgroup V. 7. Failure pattern of GSII system, which was the fracture of the abutment screw and deformation of the fixture and the abutment, was observed in both VI and VII subgroups. Apart from other subgroups, subgroup VII demonstrated no bending neither the fracture at the top of the fixture. The compressive deformation of internal slope in the fixture was the only thing observed in subgroup VII.

Alternative Use of Inferior Blow-out Fracture Reduction with Urinary Balloon Catheter (풍선 달린 카테터를 이용한 안저 파열 골절 정복의 선택적 사용)

  • Park, Sung Hoon;Yang, Ho Jik
    • Archives of Plastic Surgery
    • /
    • v.34 no.6
    • /
    • pp.729-734
    • /
    • 2007
  • Purpose: The operative treatment for blow-out fracture involves restoration of intra-orbital soft tissue and bony structural integrity. There are several methods for reconstruction of inferior blow out fracture. We report reduction of inferior blow-out fracture with urinary balloon catheter in comparison with $Medpor^{(R)}$ using group to complication rate. Methods: A retrospective study was performed on 67 patients who underwent inferior orbital blow-out fracture reconstruction with $Medpor^{(R)}$ implant or urinary balloon catheter following between 2003 and 2006. Hospital records were reviewed especially for preoperative and postoperative enophthalmos, diplopia, extraocular muscle movement limitations, and hypoesthesia between $Medpor^{(R)}$ implant group and balloon catheter using group. Results: There was no significant statistical difference between both groups on incidence of postoperative complications of enophthalmos, diplopia, extraocular muscle movement limitations, and hypoesthesia. Postoperative infection, ectropion were absent in both groups.Conclusion: The use of urinary balloon catheter is simple, fast and inexpensive. Urinary balloon catheter is an alternative and reliable use for reduction of inferior orbital blow-out fracture.

Comparison of fatigue fracture strength by fixture diameter of mini implants (미니 임플란트 직경에 따른 피로파절강도의 비교 연구)

  • Heo, Yu-Ri;Son, Mee-Kyoung;Kim, Hee-Jung;Choe, Han-Cheol;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.156-161
    • /
    • 2012
  • Purpose: This study was conducted to obtain difference in fracture strength according to the diameter of one-body O-ring-type of mini implant fixture, to determine the resistance of mini implant to masticatory pressure, and to examine whether overdenture using O-ring type mini implant is clinically usable to maxillary and mandibular edentulous patients. Materials and methods: For this study, 13 mm long one body O-ring-type mini implants of different diameters (2.0 mm, 2.5 mm and 3.0 mm) (Dentis, Daegu, Korea) were prepared, 5 for each diameter. The sample was placed at $30^{\circ}$ from the horizontal surface on the universal testing machine, and off-axis loading was applied until permanent deformation occurred and the load was taken as maximum compressive strength. The mean value of the 5 samples was calculated, and the compressive strength of implant fixture was compared according to diameter. In addition, we prepared 3 samples for each diameter, and applied loading equal to 80%, 60% and 40% of the compressive strength until fracture occurred. Then, we measured the cycle number on fracture and analyzed fatigue fracture for each diameter. Additionally, we measured the cycle number on fracture that occurred when a load of 43 N, which is the average masticatory force of complete denture, was applied. The difference on compressive strength between each group was tested statistically using one-way ANOVA test. Results: Compressive strength according to the diameter of mini implant was $101.5{\pm}14.6N$, $149{\pm}6.1N$ and $276.0{\pm}13.4N$, respectively, for diameters 2.0 mm, 2.5 mm and 3.0 mm. In the results of fatigue fracture test at 43 N, fracture did not occur until $2{\times}10^6$ cycles at diameter 2.0 mm, and until $5{\times}10^6$ cycles at 2.5 mm and 3.0 mm. Conclusion: Compressive strength increased significantly with increasing diameter of mini implant. In the results of fatigue fracture test conducted under the average masticatory force of complete denture, fracture did not occur at any of the three diameters. All of the three diameters are usable for supporting overdenture in maxillary and mandibular edentulous patients, but considering that the highest masticatory force of complete denture is 157 N, caution should be used in case diameter 2.0 mm or 2.5 mm is used.

Fracture Analysis of Implant Components using Scanning Electron Microscope : Part II - Implant Retaining Screw (임플란트 구성요소의 파절면에 관한 주사전자현미경적 연구 : Part II - 임플란트 유지나사)

  • Lim, Kwang-Gil;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.4
    • /
    • pp.373-388
    • /
    • 2010
  • Fracture causes serious problems in many instance of prosthetic failures. But it is hard to find the definite causes when fractures occur. Fractography encompasses the examination of fracture surfaces that contain features resulting from the interaction of the advancing crack with the microstructure of the material and the stress fields. All fractured specimens(implant retaining screw) retrieved from Gangneung-Wonju national university dental hospital for 3 years(from 2007 to 2009). After pretreatment of samples, the scanning electon microscope were used for surface examination and fracture analysis. In case of most of the fractured specimens, fracture took place by fatigue fracture and fractured surface represents fatigue striation. Fatigue striation indicate the progression of the crack front under cyclic loading, are characteristic of stage 2 crack growth. The site of crack initiation and stage 1 crack growth were not easily identified in any of the failure, presumably because of the complex microstructural features of the polycrystalline sample. In case of fractured by overload, dimpled or cleavage surface were observed. Using the interpretation of characteristic markings(ratchet mark, fatigue striation, dimple, cleavage et al) in fracture surfaces, failure events containing the crack origin, crack propagation, material deficiency could be understand. Using the interpretation of characteristic markings in fracture surfaces, cause and mechanism of fractures could be analyzed.

Mechanical and biological complication rates of the modified lateral-screw-retained implant prosthesis in the posterior region: an alternative to the conventional Implant prosthetic system

  • Lee, Jae-Hong;Lee, Jong-Bin;Kim, Man-Yong;Yoon, Joon-Ho;Choi, Seong-Ho;Kim, Young-Taek
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.150-157
    • /
    • 2016
  • PURPOSE. The modified lateral-screw-retained implant prosthesis (LSP) is designed to combine the advantages of screw- and cement-retained implant prostheses. This retrospective study evaluated the mechanical and biological complication rates of implant-supported single crowns (ISSCs) inserted with the modified LSP in the posterior region, and determined how these complication rates are affected by clinical factors. MATERIALS AND METHODS. Mechanical complications (i.e., lateral screw loosening [LSL], abutment screw loosening, lateral screw fracture, and ceramic fracture) and biological complications (i.e., peri-implant mucositis [PM] and peri-implantitis) were identified from the patients' treatment records, clinical photographs, periapical radiographs, panoramic radiographs, and clinical indices. The correlations between complication rates and the following clinical factors were determined: gender, age, position in the jaw, placement location, functional duration, clinical crown-to-implant length ratio, crown height space, and the use of a submerged or nonsubmerged placement procedure. RESULTS. Mechanical and biological complications were present in 25 of 73 ISSCs with the modified LSP. LSL (n=11) and PM (n=11) were the most common complications. The incidence of mechanical complications was significantly related to gender (P=.018). The other clinical factors were not significantly associated with mechanical and biological complication rates. CONCLUSION. Within the limitations of this study, the incidence of mechanical and biological complications in the posterior region was similar for both modified LSP and conventional implant prosthetic systems. In addition, the modified LSP is amenable to maintenance care, which facilitates the prevention and treatment of mechanical and biological complications.

Complication incidence of two implant systems up to six years: a comparison between internal and external connection implants

  • Chae, Sung-Wook;Kim, Young-Sung;Lee, Yong-Moo;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Su-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • Purpose: This study was conducted to compare the cumulative survival rates (CSRs) and the incidence of postloading complications (PLCs) between a bone-level internal connection system (ICS-BL) and an external connection system (ECS). Methods: The medical records of patients treated with either a ICS-BL or ECS between 2007 and 2010 at Asan Medical Center were reviewed. PLCs were divided into two categories: biological and technical. Biological complications included >4 mm of probing pocket depth, thread exposure in radiographs, and soft tissue complications, whereas technical complications included chipping of the veneering material, fracture of the implant, fracture of the crown, loosening or fracture of the abutment or screw, loss of retention, and loss of access hole filling material. CSRs were determined by a life-table analysis and compared using the log-rank chi-square test. The incidence of PLC was compared with the Pearson chi-squared test. Results: A total of 2,651 implants in 1,074 patients (1,167 ICS-BLs in 551 patients and 1,484 ECSs in 523 patients) were analyzed. The average observation periods were 3.4 years for the ICS-BLs and 3.1 years for the ECSs. The six-year CSR of all implants was 96.1% (94.9% for the ICS-BLs and 97.1% for the ECSs, P=0.619). Soft tissue complications were more frequent with the ECSs (P=0.005) and loosening or fracture of the abutment or screw occurred more frequently with the ICS-BLs (P<0.001). Conclusions: Within the limitations of this study, the ICS-BL was more prone to technical complications while the ECS was more vulnerable to biological complications.

Silicone Implant Sandwiched between Intact Nasal Bones with Fractured Nasal Bone Segments

  • Woo, Soo Hyun;Kim, Woo Seob;Kim, Han Koo;Bae, Tae Hui
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.1
    • /
    • pp.59-61
    • /
    • 2017
  • As the number of people who have undergone augmentation rhinoplasty has increased recently, nasal fractures are becoming more common after rhinoplasty. A silicone implant can affect the nasal fracture pattern, but there is no significant difference in treatment methods commonly. A 28-year-old female who had undergone augmentation visited our clinic with a nasal fracture. Computed tomography revealed that the silicone implant was sandwiched between the intact nasal bones with fractured bone fragments. In this case, open reduction was inevitable and a new silicone implant was inserted after reduction. Migration of the silicone implant beneath the nasal bone is a very rare phenomenon, but its accurate prevention and diagnosis is important because a closed reduction is impossible.

Internal Fixation of Medpor® Implant for Prevention of Enophthalmos in Posteriorly Extended Orbital Floor Fracture (후방까지 연장된 안와하벽골절에서 안구함몰 예방을 위한 Medpor® 내고정술)

  • Suhk, Jeong Hoon;Ji, So Young;Kim, Tae Bum;Yang, Wan Suk
    • Archives of Craniofacial Surgery
    • /
    • v.9 no.2
    • /
    • pp.55-61
    • /
    • 2008
  • Purpose: The purpose of this study is to evaluate the effectiveness of internal fixation method of $Medpor^{(R)}$ implant with $BioSorb^{TM}FX$ screw which is used for prevention of enophthalmos in posteriorly extended large orbital floor fracture. Methods: From Jun. 1997 to Dec. 2007, 21 patients who were diagnosed with posteriorly extended large orbital floor fractures were classified into two groups. One group(n=11) had undergone reduction surgery with regular $Medpor^{(R)}$ sheets without any fixation method, while the other group(n=10) had their $Medpor^{(R)}$ sheets fixed with the $BioSorb^{TM}FX$ screws. The two groups were evaluated by comparison of their enophthalmos degree and effectiveness. Results: In the non-fixation group, six patients had enophthalmos preoperatively and three of them showed persistent enophthalmos postoperatively. In postoperative CT examination, displacement of $Medpor^{(R)}$ implant with soft tissue impaction into maxillary sinus was observed in the patients. In the screw fixation group, three patients had enophthalmos preoperatively, but none of them suffer from complication such as residual enophthalmos, soft tissue impaction, muscle entrapment or optic nerve compression postoperatively. Conclusion: Internal fixation method of $Medpor^{(R)}$ implant with $BioSorb^{TM}FX$ screw on the medial surface of orbital floor provides firm stabilization of implants and surrounding soft tissues and can be an effective option especially when postoperative implant displacement or malposition was expected.

Full mouth rehabilitation on a bilateral condylar fractured patient using orthognathic surgery and dental implant

  • Park, Jee-Youn;Ahn, Kang-Min;Lee, Joo-Hee;Cha, Hyun-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.1
    • /
    • pp.51-55
    • /
    • 2011
  • BACKGROUND. Mandibular displacement is a common complication of condylar fracture. In the mandibular displacement due to condylar fracture, it is difficult to restore both esthetics and function without using orthognathic surgery. CASE DESCRIPTION. This clinical report described a full mouth rehabilitation in the patient with bilateral condylar fractures and displaced mandible using bilateral sagittal split ramus osteotomy (BSSRO) and simultaneous dental implant surgery. Mandibular position was determined by model surgery through the diagnostic wax up and restoration of fractured teeth. The precise amount of the mandibular shift can be obtained from the ideal intercuspation of remaining teeth. CLINICAL IMPLICATION. Mandibular displacement by both condylar fractures can be successfully treated by orthognathic surgery. Determination of occlusal plane and visualization from diagnostic wax up are mandatory for mandibular repositioning of model surgery. Stable occlusion and regular recall check up are needed for long-term outcome.