• Title/Summary/Keyword: Impingement Mixing

Search Result 30, Processing Time 0.03 seconds

MIXING CONDITIONS WITH SPRAY-JET INTERACTION FOR EFFECTIVE SOOT REDUCTION IN DIESEL COMBUSTION

  • Chikahisa, Takemi;Hishinuma, Yukio;Ushida, Hirohisa
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.17-26
    • /
    • 2002
  • The authors have reported significant reductions in particulate emissions of diesel engines by generating strong turbulence during the combustion process. This study aims to identify optimum conditions of turbulent mixing for effective soot reduction during combustion. The experiments were conducted with a constant volume combustion vessel equipped with abet-generating cell, in which a small amount of fuel is injected during the combustion of the main spray. The jet of burned gas from the cell impinges the main flame, causing changes In the mixing of fuel and air. Observation was made for a variety combinations of distances between spray nozzle and Jet orifice at different directions of impingement. It Is shown that compared with the case without Jet flame soot decreases when the jet impinges. When the jet is very close to the flame, it penetrates the soot cloud and causes little mixing. There were no apparent differences in the combustion duration when the direction of impingement was varied, although the mechanisms of soot reduction seemed different. An analysis of local turbulent flews with PIV (Particle image Velocimetry) showed the relationship between the scale of the turbulence and the size of the soot cloud.

Analysis of impingement mixing for coating in injection mold (사출금형 안에서 코팅을 위한 충돌혼합에 관한 해석)

  • Kim, Seul-Woo;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • In-mold Coating is a method that can simultaneously perform injection molding and surface coating in injection mold. The material used for coating is two-component polyurethane which is composed of polyol and isocyanate. L-type mixing head can be used to mix polyol and isocyanate uniformly, and inject them inside the mold cavity. The surface quality of the injection molded products by using in-mold coating depends on the mixing uniformity between main agent and hardener. In this study, flow analysis was performed to design a mixing head for uniform mixing of two-component polyurethane. Especially the effects of design parameters of mixing head on mixing uniformity and nozzle pressure were investigated. The parameters of mixing head were mixing chamber diameter, cleaning cylinder diameter, nozzle alignment angle in the horizontal and vertical direction, and cleaning piston position. It was found that optimal design values were mixing chamber diameter of 3.5 mm, cleaning cylinder diameter of 5.0 mm, nozzle horizontal/vertical alignment angles of 140°/160°, and cleaning piston position of 1.8 mm. The optimal values would be used to develop a two-component mixing head achieving an uniform mixing for in-mold coating.

A Study on the Behavior and Heat Transfer Characteristics of Impinging Sprays

  • Yang, Hei-Cheon;Park, Sang-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.374-383
    • /
    • 2001
  • The spray/wall interaction is considered as an important phenomenon influencing air-fuel mixing in the internal combustion engines. In order to adequately represent the spray/wall interaction process, impingement regimes and post-impingement behavior have been modeled using experimental data and conservation constraints. The modeled regimes were stick, rebound, spread and splash. The tangential velocities of splashing droplets were obtained using a theoretical relationship. The continuous phase was modeled using the Eulerian conservation equations, and the dispersed phase was calculated using a discrete droplet model. The numerical simulations were compared to experimental results for spray impingement normal to the wall. The predictions for the secondary droplet velocities and droplet sizes were in good agreement with the experimental data.

  • PDF

A Study on the Fluid Mixing Analysis for the Shell Wall Thinning Mitigation by Design Modification of a Feedwater Heater Impingement Baffle (급수가열기 충격판 설계변경에 따른 동체감육 완화에 관한 유동해석 연구)

  • Kim K. H.;Hwang K. M.;Jin T. E.
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • Feedwater heaters of many nuclear power plants have recently experienced wall thinning damage, which will increase as operating time progresses. As it is judged that the wall thinning damages have generated due to local fluid behavior around the impingement baffle installed in downstream of the high pressure turbine extraction steam line to avoid colliding directly with the tubes, numerical analyses using PHOENICS code were performed for two models with original clogged impingement baffle and modified multi-hole impingement baffle. To identify the relation between wall thinning and fluid behavior, the local velocity components in x-, y-, and z-directions based on the numerical analysis for the model with the clogged impingement baffle were compared with the wall thickness data by ultrasonic test. From the comparison of the numerical analysis results and the wall thickness data, the local velocity component only in the y-direction, and not in the x- and z-direction, was analogous to the wall thinning configuration. From the result of the numerical analysis for the modified impingement baffle to mitigate the shell wall thinning, it was identified that the shell wall thinning may be controlled by the reduction of the local velocity in the y-direction.

  • PDF

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, Sang-Nyung
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • Feedwater flowing tube side of number 5 high pressure feedwatrr heaters was heated by extracting steam from high pressure turbine and draining water from moisture separators and number 6 high pressure feedwater heaters and supplied into steam generators. Because the extracting steam from the high pressure turbine is two phase fluid of high temperature, high pressure, and high speed and flows to inverse direction after impinging to impingement baffle. the shell wall of the number 5 high pressure feedwater heater may be affected by flow accelerated corrosion. On May 14, 1999, Point Beach Nuclear Plant (PBNP) with operating at full power experienced a steam leak from rupture of shell side of number 4B feedwater heater. Also, d domestic nuclear power plant experienced a severe wall thinning of shell side of number 5A and 5B feedwater heaters. This paper describes the fluid mixing analysis study using PHOENICS code in order to get at the root of the shell wall thinning of the feedwater heaters. The sections included in the fluid mixing analysis model are around the number 5h feedwater heater shell including the extracting pipeline. To identify the relation between the local velocities and wall thinning. the local velocities according to the analysis results were compared with the distribution of the shell wall thickness by ultrasonic test.

  • PDF

A Study on Mixing Characteristics of Two-component Polyurethane for In-mold Coating (인몰드 코팅을 위한 이액형 폴리우레탄의 혼합특성에 관한 해석적 연구)

  • Lee, Ho Sang;Kim, Dong Mi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.317-323
    • /
    • 2013
  • In-mold coating is a reactive fluid designed to improve the surface quality of injection molded thermoplastic substrate in functional and cosmetic properties. In this study, a mixing head for in-mold coating was designed, and mixing characteristics of two-component polyurethane flowing through runner were investigated based on flow simulations. In order to achieve uniform mixing of two components injected through straight mixing head, an impingement aftermixer was used in runner design. Semi-circular cross-section was better than circular one for runners for uniform mixing. With increasing runner length and flow rate, mixing became more uniform. In addition, the degree of mixing was more improved with decreasing viscosity of isocyanate.

Research Studies of Impingement Characteristics for Hypergolic Propellant (접촉 점화성 추진제의 충돌형 혼합 특성 연구 사례)

  • Kim, Kyu-Seop;Kim, Yehyun;Jung, Sangwoo;Jeong, Junyeong;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.90-100
    • /
    • 2019
  • Hypergolic thrusters have been extensively researched and applied to spacecraft propulsion based on their simplicity and high reliability of ignition. Research on the impingement characteristics of $N_2O_4$/amine has been profoundly carried out since the 1960s in advanced countries, especially the United States. Recently, enhancements to advanced hypergolic thrusters using MON/MMH have been planned by NASA to improve compactness and high performance. In this work, technical studies were investigated on the mixing of hypergolic propellant and its combustion instabilities such as reactive separation flow and popping.

Influences of Polyurethane Nozzle Shape on Mixing Efficiency (폴리우레탄 발포 노즐 형상이 혼합 성능에 미치는 영향)

  • Kim, Do Yeon;Lee, Tae Kyung;Jeong, Hae Do;Kim, Hyoung Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.31-35
    • /
    • 2016
  • For reaction injection molding (RIM) polyurethane was mixed in the mixing head by impingement mixing, injected into the mold, and cured quickly, as soon as the mold is filled. The shape of the nozzle in the mixing head is critical to improve the quality of polyurethane. To achieve homogeneous mixing, an intensive turbulence energy in the mixing nozzle is essential. In this study, a mixing nozzle for RIM was designed, and mixing efficiency was investigated based on experiment. Experiments were conducted with different combinations of nozzle tips and exit diameter to measure the mixing efficiency by measuring jet force and investigating mixing image with high speed camera. Jet force increased gradually and reaches steady state conditions. The jet force depended on shape of nozzle tip and outlet sizes. These results suggest that optimized nozzle configurations are necessary for high efficiency mixing with RIM.

Numerical visualization of mixing in a circular chamber by two opposite impinging jets (반대방향 충돌제트에 의한 원형 챔버 내 혼합거동에 대한 전산가시화)

  • Karbasian, Hamidreza;Kim, Youngwoo;Lee, In Bum;Han, Beom Jeong;Jeong, Yong Chai;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.32-37
    • /
    • 2016
  • In this study, the mixing process of two distinct flow is numerically investigated. Two flow with different physical properties (resin and hardener) are mixed through the opposing mixing jets. At a high pressure mixing process, the high speed flow is provided by two in-line nozzles. In the case of numerical modeling, Reynolds-Averaged Navier-Stokes Equations (RANS) is conducted to model the flow pattern inside the chamber. Additionally, SST k-omega turbulence model is selected to predict the kinetic energy of flow in impingement zone. The results show that mixing of two distinct flows would be efficient if the velocity of jet is high enough and nozzle diameter is a predominant parameter. Also, this velocity would create higher shear stress between two distinct flows which increases the mixing quality as well as strength of formed vortices. Eventually, the histogram of concentration fraction of resin is examined in order to show the quality of mixing and the range of concentration fractions in the output of chamber.