• Title/Summary/Keyword: Impedance tube

Search Result 139, Processing Time 0.025 seconds

A Study on the Classification of Steam Generator Tube Defects Using an Improved Feature Extraction (개선된 특징 추출을 이용한 원전SG 세관 결함 패턴 분류에 관한 연구)

  • Jo, Nam-Hoon;Lee, Hyang-Beom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.27-35
    • /
    • 2009
  • In this paper, we study the classification of steam generator tube defects using an improved feature extraction. We consider 4 axisymmetric defect patterns of tube: I-In type, I-Out type, V-In type, and V-Out type. Through numerical analysis program based on finite element modeling, 400 ECT signals are generated by varying width and depth of each defect type. From those generated ECT signals, we propose new feature vectors that include an angle between the two points where the Maximum impedance and half the Maximum impedance, and angles between Maximum impedance point and 10%, 20%, 30%, 40% of Maximum impedance points. Also, multi-layer perceptron with one hidden layer is used to classify the defect patterns. Through the computer simulation study, it is shown that the proposed method achieves an improved defect classification performance in terms of Maximum Error and mean square Error.

Sound Transmission Loss Measurement for Sound Isolation Sheets by Two-Microphone Impedance Tube Method (두 개의 마이크로폰의 부착된 임피던스관법을 이용한 차음시트의 음향투과손실 측정)

  • Lee, Dong-Hoon;Yong, Ho-Taek;Lee, Seung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.63-72
    • /
    • 2002
  • The main objective of this study is to propose a practical two-microphone impedance tube method to measure the sound transmission loss for flexible sound isolation sheets without the use of the time-consuming and expensive reverberation room. This method was based on the sound decomposition theory developed by Seybert using the spectral density functions of the incident and reflected sound waves. In order to verify the validity of the experimental results, the measured sound transmission losses from the proposed method were compared with the measured data from the reverberation room method and the calculated data from the theory satisfying the mass law of sound isolation material. The resulted trends of the sound transmission losses versus frequencies for several different sound isolation sheets were almost same for each other and agreed quite well in both methods except at some low frequency region. From the experimental results, it was found that the accuracy of sound isolation capability obtained by two-microphone impedance tube method depends upon the microphone spacing, the distance from the first microphone to the test sample surface and the test sample location.

Comparison of Absorption Coefficient according to Test Methods (시험방법에 따른 흡음률 비교)

  • Lee, J.W.;Gu, J.H.;Park, H.K.;Kang, Dae-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.373-378
    • /
    • 2007
  • Today, the use of the sound absorptive material is increasing to improve the room acoustics in the auditorium and music hall, etc. Usually, the sound absorption materials have been used to enhance the performance of a noise barrier and improve the room acoustics in construction site. Generally, the sound absorbtion coefficients are the most important factor reflecting the sound absorbtion performance. There are two methods to measure the sound absorption coefficient. The first one is the reverberation room method, and the second is the impedance tube method. In this study, we measure the sound absorbtion coefficients using these two methods, and then we compared the results of the sound absorbtion coefficients to look into the difference of results between reverberation room method and impedance tube method. Also we compared the results of the sound absorbtion coefficients with respect to the size of sample and the volume of reverberation room. From the experiment, we could see that the sound absorbtion coefficients are measured equally for different sample size. But the sound absorbtion coefficients are measured differently according to test methods and test conditions.

Analysis of RPC Probe Signal for S/G Tube in Nuclear Power Plant Considering Defect Factor (결함인자를 고려한 원전 SG세관에서의 RPC 프로브의 신호 해석)

  • Kim, Ji-Ho;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.53-55
    • /
    • 2005
  • The signals of the eddy current testing(ECT) for the examination of the steam generator(SG) tubes in the nuclear power plant(NPP) determine the existence, size, and kind of defects using the variation of impedance signals when a testing coil, driven by alternating current, passes through the SG tube contains defects. The aim of this paper is building a database of the RPC probe signals on the basis of the sizes variation of defects and frequency variation of probe. In this paper 3-D numerical analysis of the ECT signals using the finite element method is performed. Through this study, it is shown variation of magnitude and phase of impedance according to variation of defect size and frequency. From the result of this paper, we can obtain the information which is useful in defect discrimination of SG tube in nuclear power plant.

  • PDF

Note on the Two-Microphone Methods for the Measurement of Acoustic Impedance (음향 임피던스 측정을 위한 이중 마이크로폰 기법에 대한 고찰)

  • SEO, SEONGHYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.163-169
    • /
    • 2018
  • The present article discusses about the measurement techniques of acoustic impedance that becomes one of the important acoustic characteristics of various boundaries found inside of propulsion systems. Acoustic characteristics including acoustic impedance and reflection coefficient can be often assessed and estimated by use of the two-microphone method. Theoretical expressions of acoustic impedance and reflection coefficient measured in an impedance tube are presented for both cases with mean flow and without flow, and the practical application of the method through calibration is also provided. The acoustic impedance and the reflection coefficient are related with axial locations of microphones, thermodynamic characteristics of gas inside, and the transfer function between the pressure wave measurements at multiple locations.

Performance test of 100 W linear compressor

  • Ko, J.;Koh, D.Y.;Park, S.J.;Kim, H.B.;Hong, Y.J.;Yeom, H.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.35-39
    • /
    • 2013
  • In this paper, we present test results of developed 100 W class linear compressor for Stirling-type pulse tube refrigerator. The fabricated linear compressor has dual-opposed configuration, free piston and moving magnet type linear motor. Power transfer, efficiency and required pressure waveform are predicted with designed and measured specifications. In experiments, room temperature test with flow impedance is conducted to evaluate performance of developed linear compressor. Flow impedance is loaded to compressor with metering valve for flow resistance, inertance tube for flow inertance and buffer volumes for flow compliance. Several operating parameters such as input voltage, current, piston displacement and pressure wave are measured for various operating frequency and fixed input current level. Behaviors of dynamics and performance of linear compressor as varying flow impedance are discussed with measured experimental results. The developed linear compressor shows 124 W of input power, 86 % of motor efficiency and 60 % of compressor efficiency at its resonant operating condition.

Sound absorption of micro-perforated elastic plates in a cylindrical impedance tube (원통형 임피던스 튜브 내 미세천공 탄성 판의 흡음)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun;Ma, Pyung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.181-187
    • /
    • 2018
  • In this paper, sound absorption of micro-perforated elastic plates installed in an impedance tube of a circular cross-section is discussed using an analytic method. Vibration of the plates and sound pressure fields inside the duct are expressed in terms of an infinite series of modal functions, where modal functions in the radial direction is given in terms of the Bessel functions. Under the plane wave assumption, a low frequency approximation is derived by including the first few plate modes, and the sound absorption coefficient is given in terms of an equivalent impedance of a single surface. The sound absorption coefficient using the proposed formula is in excellent agreement with the result by the FEM (Finite Element Method), and shows dips and peaks at the natural frequencies of the plate. When the perforation ratio is very small, the sound absorption coefficient is dominated by the vibration effect. However, when the perforation ratio reaches a certain value, the sound absorption is mainly governed by the rigid MPP (Micro-Perforated Plate), while the vibration effect becomes very small.

An Analysis of the Sound Transmission through a Plate Installed inside an Impedance Tube (임피던스 튜브 내에 설치된 평판의 음파투과해석)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • In this paper, derivation of the STL (Sound Transmission Loss) of a square plate installed in an impedance tube is discussed using an analytic method. Coupled motion of the plate vibration and acoustic field is considered. Vibration of the plate and pressure field inside the tube are expressed in terms of the infinite series of modal functions. Under the plane wave assumption, it is shown that consideration of the first few modes yields sufficiently accurate results. When the boundary of the plate is clamped, vibration mode is assumed as a multiplication of the beam modes corresponding to the crosswise directions. The natural frequencies of the clamped plate are calculated using the Rayleigh-Ritz method. It is found that the STL shows a dip at the lowest natural frequency of the plate, and increases as the frequency decreases below the natural frequency. Comparison of the result in this paper with the STL obtained by measurements and FE computations in the reference shows an excellent agreement.

A study on the sound transmission through double plates installed inside an impedance tube (임피던스 튜브 내에 설치된 이중 평판의 음파투과연구)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Seo, Yun-Ho;Ma, Pyung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.253-260
    • /
    • 2016
  • In this paper, derivation of the STL (Sound Transmission Loss) of the double plates installed in an impedance tube is discussed using an analytic method, where an air cavity exists between the plates. Vibration of the plates and sound pressure field inside the tube are expressed in terms of infinite series of modal functions. Under the plane wave assumption, it is shown that consideration of the first few modes yields sufficiently accurate results, and locations of peaks and dips are investigated. It is determined that the peak frequencies of the double plates coincide with those of each single plate. When the two plates are identical, the STL of the double plates as well as that of the single plate become zero at the natural frequencies of the single plate. The location and amplitude of the dips are investigated using an approximation solution when the cavity depth is very small.