• Title/Summary/Keyword: Impedance Matrix

Search Result 197, Processing Time 0.03 seconds

Impedance Tomography using Internal Current Density Distribution Measured by Nuclear Magnetic Resonance (자기공명촬영상에서 구한 내부 전류밀도를 이용한 임피던스 단층촬영법)

  • Lee, Su-Yeol;U, Eung-Je;Mun, Chi-Ung
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.413-418
    • /
    • 1994
  • In electrical impedance tomography (EIT), we use boundary current and voltage measurements to provide the information about the cross-sectional distribution of electrical impedance or resistivity One of the major problems in EIT has been the inaccessibility of internal voltage or current data in finding the internal impedance values. We propose a new image reconstruction method using internal current density data measured by NMR. We obtained a two-dimensional current density distribution within a phantom by processing the real and imaginary MR images from a 4.7T NMR machine. We implemented a resistivity image reconstruction algorithm using the finite element method and sensitivity matrix. We presented computer simulation results of the image reconstruction algorithm and furture direction of the research.

  • PDF

Impedance Parameter Update Method for Dual-arm Manipulator based on Operator's Muscle Activation (조작자 근육 활성도 기반 양팔 로봇의 임피던스 제어 파라미터 갱신 방법)

  • Baek, Chanryul;Cha, Gwangyeol;Kim, Junsik;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.347-352
    • /
    • 2022
  • The paper presents how to update impedance control parameters for dual-arm manipulators using EMG signals and motions of the operator. Since the hand motions of the dual-arm are modeled to be the mass-spring-damper system in this paper, the impedance parameter update method is an important issue to reflect the operator's force. However, task space inertia to be used as the mass parameter goes to infinity if the manipulator approaches a kinematic singularity. To alleviate this issue, the impedance (stiffness and damping) parameters are divided with a diagonal element of the task space inertia. Also, the stiffness and damping matrices are updated using the normalized EMG signals captured from the operator's forearm. Through this process, the motion of the dual-arm manipulator is more stabilized even though it approaches the kinematic singularity.

Comparison of Damping Matrix Estimation Methods for Model Updating (모형개선을 위한 감쇠행렬 추정법의 비교)

  • Lee, Gun-Myung;Ju, Young-Ho;Park, Mun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.923-930
    • /
    • 2010
  • Finite element models of dynamic systems can be updated in two stages. In the first stage, mass and stiffness matrices are updated neglecting damping, and in the second stage, damping matrices are estimated with the mass and stiffness matrices fixed. Three methods to estimate damping matrices for this purpose are proposed in this paper. The methods include one for proportional damping systems and two for non-proportional damping systems. Method 1 utilizes orthogonality of normal modes and estimates damping matrices using the modal parameters extracted from the measured responses. Method 2 estimates damping matrices from impedance matrices which are the inverse of FRF matrices. Method 3 estimates damping using the equation which relates a damping matrix to the difference between the analytical and measured FRFs. The characteristics of the three methods are investigated by applying them to simulated discrete system data and experimental cantilever beam data.

A study on an analysis of the impedance matching efficiency of 100 GHz band waveguide - type SIS mixer (100 GHz 대역 도파관형 SIS 믹서의 임피던스 정합 효율에 관한 해석)

  • 한석태;김효령;이창훈;박종애;정현수;김광동;김태성;박동철
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.81-89
    • /
    • 1996
  • Quantum RF impedance of SIS (superconductor insulator superconductor) junction has been analyzed by using through on tucker's quantum mixer theory in the frequency range form 80 GHz to 120 GHz. The embedding impedance of waveguide-type mixer mount and its equivalent circuit have been evaluated. From these evaluated results, the impedance matching efficiency between mixer mount embedding impedance and mixer port impedance of upper-side band and IF which were determined by augmented admittance matrix with given backshort position has been discussed in detail. It is found that the mixer with fixed backshort mount ahs a impedance matching efficiency about 80% at each port of mixer within 85GHz to 115GHz, which implys a conversion los of mixer would be good enough to be operated such a wide band frequency range. Therefore, the theoretical evaluated results show that our method can be used ot design the mixer mount without any mechanical tuning elements such a backshort or an E-plane tunners for wide band operation.

  • PDF

Development of Inverse Solver based on TSVD in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 TSVD 기반의 역문제 해법의 개발)

  • Kim, Bong Seok;Kim, Chang Il;Kim, Kyung Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.91-98
    • /
    • 2017
  • Electrical impedance tomography is a nondestructive imaging technique to reconstruct unknown conductivity distribution based on applied current data and measured voltage data through an array of electrodes attached on the periphery of a domain. In this paper, an inverse method based on truncated singular value decomposition is proposed to solve the inverse problem with the generalized Tikhonov regularization and to reconstruct the conductivity distribution. In order to reduce the inverse computational time, truncated singular value decomposition is applied to the inverse term after the generalized regularization matrix is taken out from the inverse matrix term. Numerical experiments and phantom experiments have been performed to verify the performance of the proposed method.

A Study on the Impedance Calculation by using Equivalent Model in Catenary System

  • Kim, Min-Kyu;Kim, Min-Seok;Kim, Dae-Hwan;Lee, Jong-Woo
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • Electric railroad systems consist of rolling stock, track, signal and catenary system. In the catenary system, one of the most important factors is the impedance according to the design and characteristic. Before the catenary system is designed, the impedance should be precedently researched. The railroad catenary system is complex system which is composed by five conductors. The five conductors classify up and down feeders, up and down contact wire group, rail group. Therefore, we should compose the catenary system of the equivalent five-conductors model. In this paper, we suggest a geometrical model and a equivalent conductor model by using geometric mean radius of five conductors in the catenary system. Also, we calculate demanded parameter values in the model. By using those, line constants of five conductors are analyzed by applying the equivalent method called as the condensed joint matrix.

  • PDF

Analysis of Large Power System by Small Digital Computer (소형 digital computer를 이용한 대전력계통의 해석)

  • 박영문;정재길
    • 전기의세계
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 1974
  • This paper attempts to develop the algorithms and computer program for load flow solution and faults analysis of large power system by small digital computer. The Conventional methods for load flow solution and fault analysis of large power system require too much amount of computer memory space and computing time. Therefore, this paper describes the methad for reducing the computer memory space and computing time as follows. (1) Load Flow Solution; This method is to store each primitive impedance of lines along with a list of bus numbers corresponding to the both terminals of lines, and to store only nonzero element of bus admittance matrix. (2) Faults Analysis: This method is to partition a large power system into several groups of subsystems, form individual bus impedance matrix, store them in the storage, and assemble the only required portion of them to original total system by algorithm.

  • PDF

A Study on the Improvement of Acoustic Absorption of Multiple Layer Perforated Panel Systems (다중 다공판 시스템의 흡음성능 향상에 관한 연구)

  • Lee, Dong-Hoon;Seo, Seong-Won;Hong, Byung-Kuk;Song, Hwa-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.571-577
    • /
    • 2005
  • The acoustic absorption of multiple layer perforated panel systems is largely reduced at the anti-resonance frequency. In order to improve the acoustic absorption at the anti-resonance frequency, the sound absorbing materials are inserted between perforated panels. By the insertion of absorbing materials, it is found that the multiple layer perforated panel system has better acoustic absorption at the anti-resonance frequency and more broadband frequency. Besides, it is shown that the absorption coefficients from the transfer matrix method agree well with the values measured by the two-microphone impedance tube method for various combinations of perforated panels, airspaces or sound absorbing materials.

Application of the Method of Moments to the Capacitance Computation of a Parallel-Plate Rectangular Capacitor

  • Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.93-99
    • /
    • 2014
  • The method of moments is applied to numerically compute the electrostatic capacitance of a parallel-plate rectangular capacitor of finite area. Each plate is discretized into 900 patches per unit area to ensure a high accuracy of computation. To further enhance computational results, the impedance matrix elements are additionally evaluated in the case that the observation patch is located above or below the source patch in the vertical direction. To examine the fringing effect at the edges of the capacitor, the normalized capacitances are computed as a function of separation distance. After these results have been verified by Palmer's formula, this method is extended to the computation of capacitances between two different size plates.

Impedance Imaging of Binary-Mixture Systems with Regularized Newton-Raphson Method

  • Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.183-187
    • /
    • 2001
  • Impedance imaging for binary mixture is a kind of nonlinear inverse problem, which is usually solved iteratively by the Newton-Raphson method. Then, the ill-posedness of Hessian matrix often requires the use of a regularization method to stabilize the solution. In this study, the Levenberg-Marquredt regularization method is introduced for the binary-mixture system with various resistivity contrasts (1:2∼1:1000). Several mixture distribution are tested and the results show that the Newton-Raphson iteration combined with the Levenberg-Marquardt regularization can reconstruct reasonably good images.

  • PDF