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Abstract

The method of moments is applied to numerically compute the electrostatic capacitance of a

parallel-plate rectangular capacitor of finite area. Each plate is discretized into 900 patches per unit

area to ensure a high accuracy of computation. To further enhance computational results, the

impedance matrix elements are additionally evaluated in the case that the observation patch is located

above or below the source patch in the vertical direction. To examine the fringing effect at the edges

of the capacitor, the normalized capacitances are computed as a function of separation distance. After

these results have been verified by Palmer’s formula, this method is extended to the computation of

capacitances between two different size plates.

Key Words：Method of Moments, Capacitance, Parallel-Plate Capacitor, Impedance Matrix, Fringing Effect

* Main author：Soongsil University, Dept. of
Electrical Engineering

Tel：02-820-0663, Fax：02-817-7961
E-mail：yroh@ssu.ac.kr
Date of submit：2014. 8. 26
First assessment：2014. 8. 29
Completion of assessment：2014. 9. 11

1. Introduction

The capacitance computation is an essential

procedure in the design of conductor structures such

as pulse forming lines [1] and long parallel

transmission lines [2]. If the conductors are of an

infinite extent such that symmetry conditions of the

electric field exist, Gauss’s law can be employed to

find a uniform electric field between the conductors.

Integrating the electric field makes it possible to

obtain the electric potential difference. Under these

assumptions, the capacitance of a parallel-plate

capacitor C0 can be expressed in the following

analytic form [3].

D
SC e

=0 (1)

where e is the permittivity of the medium, S is the
plate area, and D is the separation distance between

the two plates. Eq. (1) is valid as long as the

separation distance is sufficiently smaller than the

plate dimension. However, Eq. (1) does not provide

an accurate value for the capacitance when the

separation distance is large compared to the plate
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width or length. In the case of a parallel-plate

capacitor of finite area, for example, an analytic

solution for the electric potential difference cannot

be obtained using Gauss’s law because the electric

field lines are not uniform at the edges of the plates

due to the fringing effect. Hence, it is necessary to

numerically solve the electric potential.

Many numerical methods can be used to find the

electric potential. These include the finite element

method (FEM), finite difference method (FDM),

boundary element method (BEM) and the method of

moments (MoM). Like BEM, MoM solves the

integral equation, while FEM and FDM solve the

differential equation. Since MoM requires only the

discretization of unknown functions, it does not

suffer from numerical dispersion and the matrix size

is smaller. Due to such conceptual and

computational simplicity, MoM is suitable for the

capacitance computation of a wire or plate structure

[4-6]. For these reasons, MoM is used in this paper

to compute the capacitances of parallel-plate

rectangular capacitors.

The definition of the capacitance requires the net

charge of the two plates to be zero. In MoM, this

condition is satisfied if the dimensions of the two

plates are equal. Therefore, there is no theoretical

difficulty computing the capacitance. However, this

condition is not satisfied if the dimensions are

different. In the case of two cylindrical conductors of

finite length, for instance, the total charges on the

inner conductor are different from those on the outer

conductor because the surface areas of the

conductors are unequal [7]. In fact, this runs counter

to the charge conservation law. Hence, it is difficult

to compute capacitances between two different size

plates using MoM. In this paper, this problem is

solved by imposing the condition of zero total

charge on the impedance matrix.

This paper is organized as follows. In Section 2,

the basic theory of MoM is explained. In Section 3,

the results of computations are discussed. To

examine the fringing field effect, the surface charge

distribution and the capacitances of the capacitor of

the same plates are computed as the separation

distance is changed. After these results are verified

by Palmer’s formula, a program developed based on

MoM is applied to the computation of capacitances

between two different size plates. Finally, the

conclusion of the paper is presented.

2. Basic Theory

In a simple homogeneous medium, the electric

potential is governed by Poisson’s equation. An

integral solution to Poisson’s equation at an

observation point r , due to the charge density at a
source point r' is given by [3]

( ) ( )
ò -

=
r'r

r'r
pe
r
4

'dvV v

(2)

where, vr is the volume charge density. Consider a

parallel-plate rectangular capacitor of width W,

length L, and separation distance D. If charges

reside only on its surfaces and the plate thickness

can be neglected, Eq. (2) should be replaced by the

following surface integral.

( ) ( )
ò -

=
r'r

r'r
pe
r
4

'dsV s

(3)

where, sr is the surface charge density. If the

electric potential is known, Eq. (3) is the integral

equation for the unknown surface charge density.

Namely, Eq. (3) makes it possible to find the surface

charge distribution for a predefined electric potential

difference between the two plates.

The potential on each plate is determined by
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charges on its own plate and the other plate. If 11V

(or 22V ) is the potential on the upper (or lower)

plate due to its own charge and 12V (or 21V ) is the
potential on the upper (or lower) plate due to the

charge on the lower (or upper) plate, the potential 1V

(or 2V ) on the upper (or lower) plate is given by

2221212111 , VVVVVV +=+= (4)

In the Cartesian coordinate,
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where s1r and s2r are surface charge densities on

upper and lower plates, respectively. The procedure

for applying MoM to equations (5-8) involves the

following steps: (1) discretization of the equations

into a matrix equation using pulse basis functions

and weighting functions, (2) evaluation of the

impedance matrix elements, (3) computation of the

surface charge densities.

2.1 Discretization of the integral 

equations

To apply MoM to equations (5-8), the entire

surfaces of the two plates are discretized into small

rectangular patches [4]. The upper plate is equally

divided into M segments along the x-direction,

which are further divided into N segments along the

y-direction. As a result, the upper plate is divided

into MN rectangular patches of equal area. The

lower plate is also divided into MN rectangular

patches in the same way. The unknown surface

charge densities are expressed in terms of MN basis

functions with unknown coefficients na as [5]
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nns ff

2

1
2

1
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(9)

where s1r and s2r are charge densities on upper

and lower plates, respectively. nf is a set of pulse

functions, i.e. 1=nf on the nth patch and 0=nf on

any other patch. Substituting Eq. (9) into equations

(5-8) and using point matching [5],
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Using the above equations, Eq. (4) can be

expressed in the following matrix equation.

[ ][ ] [ ]nnmn bz =a (14)

Here [ ]mnz is a square matrix of the size of 2MN
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×2MN. For convenience sake, this matrix is called the

impedance matrix. [ ]na is a column matrix of the

size of 2MN×1, which makes it possible to determine

unknown charges on all rectangular patches. [ ]nb is

also a column matrix of the size of 2MN×1,

representing electric potentials. 1Vbn = and 2V for

MNm ££1 and MNmMN 2££ , respectively.

2.2 Evaluation of the impedance 

matrix elements

The impedance matrix elements are evaluated in

the following three cases: (1) observation and source

patches are different, (2) observation and source

patches are identical, and (3) the observation patch

is located above or below the source patch in the

vertical direction.

In the first case, ( )nmzmn ¹ denotes the

non-diagonal element of the impedance matrix,

which is related to the electric potential at the center

of observation patch m due to charges on the

surface of source patch n. Note that observation and

source patches can be on the same plate or different

plates. If the two patches are on the same plate, the

matrix element is expressed as follows.
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where 1 ≤ m ≤ MN and 1 ≤ n ≤MN, or MN+1

≤m≤ 2MN and MN+1≤ n≤ 2MN. Δx=W/M, Δ

y=L/N. If the two patches are on different plates, on

the other hand,
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where 1 ≤ m ≤ MN and MN+1 ≤ n ≤ 2MN, or

MN+1 ≤ m≤ 2MN and 1 ≤ n ≤MN. Since it is

time-consuming to directly integrate equations

(15-16) for all rectangular patches, these matrix

elements are computed using a central-point

approximation: observation and source points are

placed at the centers of patches m and n [6]. In this

approximation, equations (15-16) are rewritten as
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In the second case, ( )nmznn = is the diagonal

element that corresponds to the electric potential at

the center of patch n due to charges on its own

surface. At the center of patch n,
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Using the following integral formula with

integration constant k [8],
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Eq. (19) can be expressed in a simple algebraic

form:
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In the last case, ( )MNmnzmn ±= represents the
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elements that correspond to the potential at the

center of observation patch m of the upper (or

lower) plate due to charges on source patch n of the

lower (or upper) plate along the z-direction. At the

center of patch m,

ò ò
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Applying appropriate integral formulas to Eq. (22),
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where
222 4DyxK +D+D= . The total charges on

the upper plate are computed as follows.
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3. Results of Numerical 

Computation

A MATLAB program was developed based on

equations (17), (18), (21), and (23). Before computing

the capacitance, it is important to decide the number

of patches to ensure a high computational accuracy.

Fig. 1 depicts how the normalized capacitance

(C/C0) changes as the number of patches increases.

These results can be obtained using the capacitor of

W=1m, L=1m and 0ee = under the assumption that

potentials on upper and lower plates are 1V and

-1V, respectively. The capacitance increases

abruptly as the number of patches increases up to

100 regardless of the separation distance. After 100

patches, it increases gradually and converges to a

constant value. Hence, the number of patches per

unit area is chosen to be 900(M=N=30).

Fig. 2 illustrates the surface charge distributions

obtained with the capacitor of W=1m, L=0.5m,

D=0.5m and 0ee = . The charge accumulates near

the corners and the edges of the plates due to the

fringing effect.

Fig. 1. Plots of the normalized capacitance as a
function of the number of patches

Fig. 2. Surface charge distributions on the plates

Fig. 3 shows computed capacitances of the

capacitor of W=1m, L=1m and 0ee = . It can be

observed that C is always larger than C0. This is
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Fig. 5. Comparison between the method of
moments and Palmer’s formula

expected due to the fringing effect. To

quantitatively analyze the fringing effect, the

normalized capacitance is plotted as a function of

separation distance as shown in Fig. 4. As can be

seen, the normalized capacitance is directly

proportional to the separation distance when 1.0>D

m. Note that a bigger value of the normalized

capacitance indicates a greater effect of the fringing

field. The fringing effect increases linearly as the

separation distance increases. However, it is

negligible as the separation distance approaches

zero.

Fig. 3. Plot of capacitance versus separation
distance

Fig. 4. Plot of normalized capacitance versus
separation distance

To confirm the simulation results of MoM, they

are compared to Palmer’s formula, which is derived

based on the conformal mapping transformation.

This formula is expressed as follows [9-10].
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Fig. 5 displays the plots of capacitances obtained

using MoM and Palmer’s formula. MoM shows an

excellent agreement with Palmer’s formula. Since its

computational performance is confirmed, the MoM

program can be applied to the capacitance

computation of the capacitor between two different

size plates. In this case, the condition of the net

electric charge equal to zero is not satisfied in Eq.

(14). [11] suggested a method to enforce this

condition as follows: Divide each row of Eq. (14) by

the corresponding rectangular area, then subtract

the last row of Eq. (14) from the others, and replace

this last equation by the charge conservation law.

This scheme is applied to compute capacitances

between two different size plates. An example is

shown in Fig. 6. Here, the length and the width of
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the upper plate are fixed at a value of 1m. The

length of the lower plate is also 1m, while the width

of the lower plate is chosen to be a variable. As can

be seen, the capacitance converges after the width

of the lower plate approaches 4m.

Fig. 6. Capacitance between two different size
plates as a function of the width of the
lower plate

4. Conclusion

MoM was applied to find the surface charge

density distribution and the capacitance of a

parallel-plate rectangular capacitor of finite area. It

was found that the fringing effect becomes stronger

as the separation distance increases. It was verified

by the excellent agreement between MoM and the

Palmer’s formula that MoM is capable of solving the

integral equation for the charge density. It was also

proved by the computation results of the capacitance

between two different size plates that the charge

conservation law is successfully imposed on the

MoM matrix equation.
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