• 제목/요약/키워드: Impact strain analysis

검색결과 296건 처리시간 0.022초

AA1070 알루미늄 합금의 사각형상 충격압출 성형에 미치는 공정 조건의 영향 (Effect of Process Parameters on Rectangular Cup Impact Extrusion of an AA1070 Aluminum Alloy)

  • 조민기;안은솔;박인욱;송익성;김화영;김대용;문영훈;김지훈
    • 소성∙가공
    • /
    • 제24권5호
    • /
    • pp.323-331
    • /
    • 2015
  • Impact extrusion is an economical and productive process that can replace the multistage deep drawing process for producing deep rectangular cases. In the current work, a three-dimensional finite element analysis of the impact extrusion process of a commercial purity aluminum alloy (AA1070) was performed to predict loads, material flow, and deformed shapes using the Hansel-Spittel rheology law, which describes the flow stress at various temperatures and strain rates. The role of various process parameters such as friction, clearance between punch and die, aspect ratio and thickness of billet on the process and the shapes was analyzed.

낙하해석을 통한 보드 레벨 플립칩에서의 솔더볼 충격수명에 관한 연구 (Prediction of Impact Life Time in Solder Balls of the Board Level Flip Chips by Drop Simulations)

  • 장총민;김성걸
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.237-242
    • /
    • 2014
  • Recently much research are has been done into the compositions of lead-free solders. As a result, there has been a rapid increase in the number of new compositions. In the past, the properties of these new compositions were determined and verified through drop-impact tests. However, these drop tests were expensive and it took a long time to obtain a result. The main goal of this study was to establish an analytical method capable of predicting the impact life-time of a new solder composition for board-level flip chips though the application of drop simulations using LS-DYNA. Based on the reaction load obtain with LS-DYNA, the drop-impact fracture cycles were predicted. The study was performed using a Sn-3.0Ag-0.5Cu solder (305 composition). To verify the reliability of the proposed analytical method, the results of the drop-impact tests and life-time analysis were compared, and were found to be in good agreement. Thus, the new analytical method was shown to be very useful and effective.

자동차 범퍼의 누적 충격 평가 (Numerical Modeling for Cumulative Impact of Automotive Bumper)

  • 김헌영;최종길;김정민;이강욱;여태정
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.29-34
    • /
    • 2007
  • Numerical analyses are carried out to evaluate the cumulative impact damage of an automotive front end bumper under the low speed crash events(CMVSS215) by using explicit code. Results of first impact simulation, which are deformed shape, thickness, stress tensors and strain tensors, are used as the initial conditions for a next impact simulation. Between the events, the residual vibration is damped out by using nodal damping, and then recovery after each event is evaluated by several methods, one of which is a springback analysis with implicite finite element analysis code. The coupled analysis scheme for the evaluation of cumulative impact damage is verified through the comparison with test results.

디젤기관용 Urea-SCR 시스템 펌프 기어에 관한 구조해석 (Structural Analysis of Pump Gear of Urea-SCR System for Diesel Engine)

  • 이홍윤;박충열;김형민;김세진;최두석
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.10-15
    • /
    • 2016
  • This research was conducted structural analysis in order to analyze the impact of the gear in Urea pump when the water is frozen. Subject of study, gear was designed nine models, this gear is a spur gear, located in pump. Contact conditions and rotation conditions were set the gear's condition of restriction. Given 136 MPa pressure to external gear by water was set to the applied stress. The performing result of structural analysis, maximum stress and strain are appeared between two gears. At the same diameter, strain and stress are decreased gradually thicker. Because of the little part in crevice between gears, this parts of gears could be obtained conclusion to be generated maximum stress and strain.

Impact response of ultra-high performance fiber-reinforced concrete filled square double-skin steel tubular columns

  • Li, Jie;Wang, Weiqiang;Wu, Chengqing;Liu, Zhongxian;Wu, Pengtao
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.325-351
    • /
    • 2022
  • This paper studies the lateral impact behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) filled double-skin steel tubular (UHPFRCFDST) columns. The impact force, midspan deflection, and strain histories were recorded. Based on the test results, the influences of drop height, axial load, concrete type, and steel tube wall thickness on the impact resistance of UHPFRCFDST members were analyzed. LS-DYNA software was used to establish a finite element (FE) model of UHPFRC filled steel tubular members. The failure modes and histories of impact force and midspan deflection of specimens were obtained. The simulation results were compared to the test results, which demonstrated the accuracy of the finite element analysis (FEA) model. Finally, the effects of the steel tube thickness, impact energy, type of concrete and impact indenter shape, and void ratio on the lateral impact performances of the UHPFRCFDST columns were analyzed.

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li;Chao Hou;Luming Shen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • 제47권5호
    • /
    • pp.615-631
    • /
    • 2023
  • Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method

  • Mokhatar, S.N.;Sonoda, Y.;Kueh, A.B.H.;Jaini, Z.M.
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.917-938
    • /
    • 2015
  • The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact load falling on beam structures. Three material models to describe the localized failure of structural elements are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) implementation of linear and nonlinear softening in tension and compression regions, respectively, to express the complex behavior of concrete material during short time loading condition. Validation upon existing experimental test results is conducted, from which the impact behavior of concrete beams are best described using the SPH model adopting an average velocity and erosion algorithm, where instability in terms of numerical fragmentation is reduced considerably.

고무보강 폴리머 재료의 저속 충격 해석 (A study on the Impact Characteristics for Rubber Toughened polymeric Materials under Low Velocity Impact)

  • 구본성;박명균;박세만
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2004년도 춘계학술대회
    • /
    • pp.219-231
    • /
    • 2004
  • The Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on polymeric materials. An analysis method for rubber toughened PVC is suggested to evaluated critical dynamic strain energy release rates(G$_c$) from the Charpy impact tester was used to extract ancillary information concerning fracture parameters in additional to total fracture energies and maximum critical loads. The dynamic stress intensity factor KID was computed for varying amounts of rubber contents from the obtain maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact for PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.

  • PDF

진공회로차단기용 횡자계방식 접점의 충격해석 (Impact Analysis of Spiral type Electrodes in Vacuum Circuit Breaker)

  • 박우진;안길영;오일성;허훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.895-900
    • /
    • 2001
  • It is very important for impact analysis to reflect the dynamic characteristics of materials as well as the static characteristics. As the dynamic behavior of a material is different from the static(or quasi-static) one due to the inertia effect and the stress wave propagation, an adequate experimental technique has to be developed to obtain the dynamic responses for the corresponding level of the strain rate. To determine the dynamic characteristics of materials, the Hopkinson bar (compression type) experiment is carried out. For using dynamic material properties, Johnson-Cook model is applied in impact analysis with explicit finite element method

  • PDF

충돌안전성에 미치는 블랭크형상의 영향 (Effect of Blank Shapes on the Impact Safety of Stamped Parts)

  • 심현보;박종규
    • 소성∙가공
    • /
    • 제17권3호
    • /
    • pp.210-217
    • /
    • 2008
  • The effects of blank shape on the safety of stamped parts are studied through the comparison of an optimal blank and the corresponding reference blank shape to show further advantage of the optimal blank. In order to carry out this study, stamping process has been analyzed and the forming history, e.g. accumulated effective strain and thickness has been incorporated in the crash analysis. The reference blank has been determined following to the actual industry guideline, and excessive material to the desired shape has been trimmed off before crash analysis for the objective comparison. Through the study, appreciable increase of impact safety has not been observed and the effective of blank shape is verified not to be significant.