• Title/Summary/Keyword: Impact site

Search Result 1,248, Processing Time 0.027 seconds

A Study on the Correlation between the Building Perimeter and Safety Management Cost (건물의 외주길이와 안전관리비의 상관관계 분석에 관한 연구)

  • Han, Bum-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.4
    • /
    • pp.359-370
    • /
    • 2022
  • Despite continuous efforts to reduce on-site safety accidents, the construction industry remains a high-risk sector with a high rate of fatal accidents. Design for Safety(DFS), which manages safety risk factors at the design stage, is being used as a method to lower the construction safety accident rate. However, due to limited knowledge, designers are unaware of the design-results risks during the different of the project lifecycle, including construction, operation, and maintenance. Effective DFS can be conducted if the designer understands the effect of the building shape on the safety accident rate and corresponding safety management cost(SMC). The cost of safety facilities such as fall prevention nets and safety fences will vary depending on the shape of the building. This study analyzes the outer perimeter length's impact on SMC. Following the data collection from 21 projects for this study, an analysis was conducted using the independent variables of the building perimeter(BP), building shape factor(BSF), and building area(BA), the dependent variable of SMC. The correlation R2 was found to be 0.876, 0.801 and 0.792 between the BP and SMC, BSF and SMC, BA and SMC, respectively, indicating that these factors were closely related.

Determination on Connection Type of Entrance/Exit on Urban Roads (도시부 도로상의 진출입부 접속형태 결정에 관한 연구)

  • Lee, Hyung-Mu;Kwon, Sung-Dae;Oh, Seok-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.219-230
    • /
    • 2023
  • Cities are continued to be highly advanced and metropolitanized. Lands adjacent to road make entry/exit connection increase along with construction of facilities for various purposes. However, in the absence of specific installation standards of entry and exit connection, inappropriate access location, types of access, and operation methods are deteriorating the level of traffic services at existing roads and intersections. Therefore, in order to minimize the traffic impact from entrances connected to minor arterial roads and colletor roads, first, this study re-established the waiting length in the intersection of upstream and downstream and length required for changing lanes and between entrance/exit and connection, considering the road and traffic environment in contact with the entrance. Second, it is suggested that the operation method depending on the connection type and whether to install left turn lane and acceleration and deceleration lane can be determined quantitatively by relation with the service level of nearby intersection after calculating the threshold amount of business site through negative social cost, which is the difference between the installation cost of the left turn lane and the acceleration and deceleration lane according to the type of access to the entrance and exit.

High Thermoluminescence Properties of Dy+Ce, and Dy+Na Co-Doped MgB4O7 for a Light Tracer Application (비화공식 예광탄 응용을 위한 Dy+Ce 및 Dy+Na 이중 도핑된 MgB4O7의 높은 열발광 특성)

  • Jinu Park;Nakyung Kim;Jiwoon Choi;Youngseung Choi;Sanghyuk Ryu;Sung-Jin Yang;Duck Hyeong Jung;Byungha Shin
    • Korean Journal of Materials Research
    • /
    • v.33 no.1
    • /
    • pp.15-20
    • /
    • 2023
  • 'Tracers' are bullets that emit light at the backside so that the shooter can see the trajectory of their flight. These light-emitting bullets allow snipers to hit targets faster and more accurately. Conventional tracers are all combustion type which use the heat generated upon ignition. However, the conventional tracer has a fire risk at the impact site due to the residual flame and has a by-product that can contaminate the inside of the gun and lead to firearm failure. To resolve these problems, it is necessary to develop non-combustion-type tracers that can convert heat to luminance, so-called 'thermoluminescence (TL)'. Here, we highly improve the thermoluminescence properties of MgB4O7 through co-doping of Dy3++Ce3+ and Dy3++Na+. The presence of doping materials (Dy3+, Ce3+, Na+) was confirmed by XPS (X-ray photoelectron spectroscopy). The as-synthesized co-doped MgB4O7 was irradiated with a specific radiation dose and heated to 500 ℃under dark conditions. Different thermoluminescence characteristics were exhibited depending on the type or amounts of doping elements, and the highest luminance of 370 cd/m2 was obtained when Dy 10 % and Na 5 % were co-doped.

Analysis of Construction Conditions Change due to Climate Change (기후변화에 의한 건설시공환경 변화 분석)

  • Bae, Deg Hyo;Lee, Byong Ju;Jung, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.513-521
    • /
    • 2008
  • The objective of this study is the evaluation of the impact on the construction condition due to historical observation data and IPCC SRES A2 climate change scenario. For this purpose, daily precipitation and daily mean temperature data which have been observed over the past 30 years by Korea Meteorological Administration are collected and applied. Also, A2 scenarios during 2011~2040 and 2051~2080 are used for this analysis. According to the results of trend analyses on annual precipitation and annual mean temperature, they are on the increase mostly. The available working day and the day occurred an extreme event are used as correlation indices between climate factor and construction condition. For the past observation data, linear regression and Mann-Kendall test are used to analyze the trend on the correlation index. As a result, both working day and extreme event occurrence day are increased. Likewise, for the future, variation analysis showed the similar result to that of the past and the occurrence frequency of extreme events is increased obviously. Therefore, we can project to increase flood damage potential on the construction site by climate change.

A Study on the Hazard Area of Bunkering for Ammonia Fueled Vessel (암모니아 연료추진 선박의 벙커링 누출 영향에 관한 연구)

  • Ilsup Shin;Jeongmin Cheon;Jihyun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.964-970
    • /
    • 2023
  • As part of the International Maritime Organization ef orts to reduce greenhouse gas emissions, the maritime industry is exploring low-carbon fuels such as liquefied natural gas and methanol, as well as zero-carbon fuels such as hydrogen and ammonia, evaluating them as environmentally friendly alternatives. Particularly, ammonia has substantial operational experience as cargo on transport ships, and ammonia ship engines are expected to be available in the second half of 2024, making it relatively accessible for commercial use. However, overcoming the toxicity challenges associated with using ammonia as a fuel is imperative. Detection is possible at levels as low as 5 ppm through olfactory senses, and exposure to concentrations exceeding 300 ppm for more than 30 min can result in irreparable harm. Using the KORA program provided by the Chemical Safety Agency, an assessment of the potential risks arising from leaks during ammonia bunkering was conducted. A 1-min leak could lead to a 5 ppm impact within a radius of approximately 7.5 km, affecting key areas in Busan, a major city. Furthermore, the potentially lethal concentration of 300 ppm could have severe consequences in densely populated areas and schools near the bunkering site. Therefore, given the absence of regulations related to ammonia bunkering, the potential for widespread toxicity from even minor leaks highlights the requirement for the development of legislation. Establishing an integrated system involving local governments, fire departments, and environmental agencies is crucial for addressing the potential impacts and ensuring the safety of ammonia bunkering operations.

Derivation of Engineered Barrier System (EBS) Degradation Mechanism and Its Importance in the Early Phase of the Deep Geological Repository for High-Level Radioactive Waste (HLW) through Analysis on the Long-Term Evolution Characteristics in the Finnish Case (핀란드 고준위방폐물 심층처분장 장기진화 특성 분석을 통한 폐쇄 초기단계 공학적방벽 성능저하 메커니즘 및 중요도 도출)

  • Sukhoon Kim;Jeong-Hwan Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.725-736
    • /
    • 2023
  • The compliance of deep geological disposal facilities for high-level radioactive waste with safety objectives requires consideration of uncertainties owing to temporal changes in the disposal system. A comprehensive review and analysis of the characteristics of this evolution should be undertaken to identify the effects on multiple barriers and the biosphere. We analyzed the evolution of the buffer, backfill, plug, and closure regions during the early phase of the post-closure period as part of a long-term performance assessment for an operating license application for a deep geological repository in Finland. Degradation mechanisms generally expected in engineered barriers were considered, and long-term evolution features were examined for use in performance assessments. The importance of evolution features was classified into six categories based on the design of the Finnish case. Results are expected to be useful as a technical basis for performance and safety assessment in developing the Korean deep geological disposal system for high-level radioactive waste. However, for a more detailed review and evaluation of each feature, it is necessary to obtain data for the final disposal site and facility-specific design, and to assess its impact in advance.

On-site Investigation of Work Cease Rights Conducted by Employers to Ensure Worker Safety (근로자 안전을 확보하기 위해 실시하는 사업주에 의한 작업중지권 현장 실태조사)

  • Woo Sub Shim;Sang Beam Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.806-814
    • /
    • 2023
  • Purpose: According to the Occupational Safety and Health Act of the Ministry of Employment and Labor, in order to prevent industrial accidents, the right to stop work must be exercised in the event of an imminent danger. This study conducted a fact-finding survey on whether employers fulfilled the right to suspend work in the workplace when an imminent danger, such as a typhoon, was encountered. Method: For two days from August 9 to October, when the impact of Typhoon Khanun No. 6 was significant, it was confirmed by wire whether or not the work suspension was carried out at the workplace, and the subjects of the survey were 1,649 construction sites, 830 manufacturing sites, and 278 other industries, for a total of 2,757 sites. Result: As a result of the fact-finding survey, 56% (1,555 locations) on August 9th and 77% (2,142 locations) on August 10th carried out full or partial work suspension. In particular, on August 10, when the typhoon landed, 40% of all workplaces completely stopped work. Conclusion: Through this study, it was confirmed that the right to suspend work by employers is being used in actual workplaces. In the future, when there is an imminent danger, in addition to the right to suspend work, flexible and telecommuting, working hour adjustments, etc. must be actively used to ensure the safety of workers and protect their lives.

Numerical Analysis of Fault Stability in Janggi Basin for Geological CO2 Storage (CO2 지중저장에 따른 장기분지 내 단층안정성 기초해석)

  • Jung-Wook Park;Hanna Kim;Hangbok Lee;Chan-Hee Park;Young Jae Shinn
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.399-413
    • /
    • 2023
  • The present study conducted a numerical modeling of CO2 injection at the Janggi Basin using the TOUGH-FLAC simulator, and examined the hydro-mechanical stability of the aquifer and the fault. Based on the site investigations and a 3D geological model of the target area, we simulated the injection of 32,850 tons of CO2 over a 3-year period. The analysis of CO2 plume with different values of the aquifer permeability revealed that assuming a permeability of 10-14 m2 the CO2 plume exhibited a radial flow and reached the fault after 2 years and 9 months. Conversely, a higher permeability of 10-13 m2 resulted in predominant westward flow along the reservoir, with negligible impact on the fault. The pressure changes around the injection well remained below 0.6 MPa over the period, and the influence on the hydro-mechanical stability of the reservoir and fault was found to be insignificant.

The Prediction of the Helpfulness of Online Review Based on Review Content Using an Explainable Graph Neural Network (설명가능한 그래프 신경망을 활용한 리뷰 콘텐츠 기반의 유용성 예측모형)

  • Eunmi Kim;Yao Ziyan;Taeho Hong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.309-323
    • /
    • 2023
  • As the role of online reviews has become increasingly crucial, numerous studies have been conducted to utilize helpful reviews. Helpful reviews, perceived by customers, have been verified in various research studies to be influenced by factors such as ratings, review length, review content, and so on. The determination of a review's helpfulness is generally based on the number of 'helpful' votes from consumers, with more 'helpful' votes considered to have a more significant impact on consumers' purchasing decisions. However, recently written reviews that have not been exposed to many customers may have relatively few 'helpful' votes and may lack 'helpful' votes altogether due to a lack of participation. Therefore, rather than relying on the number of 'helpful' votes to assess the helpfulness of reviews, we aim to classify them based on review content. In addition, the text of the review emerges as the most influential factor in review helpfulness. This study employs text mining techniques, including topic modeling and sentiment analysis, to analyze the diverse impacts of content and emotions embedded in the review text. In this study, we propose a review helpfulness prediction model based on review content, utilizing movie reviews from IMDb, a global movie information site. We construct a review helpfulness prediction model by using an explainable Graph Neural Network (GNN), while addressing the interpretability limitations of the machine learning model. The explainable graph neural network is expected to provide more reliable information about helpful or non-helpful reviews as it can identify connections between reviews.

Extraction and Utilization of DEM based on UAV Photogrammetry for Flood Trace Investigation and Flood Prediction (침수흔적조사를 위한 UAV 사진측량 기반 DEM의 추출 및 활용)

  • Jung-Sik PARK;Yong-Jin CHOI;Jin-Duk LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.237-250
    • /
    • 2023
  • Orthophotos and DEMs were generated by UAV-based aerial photogrammetry and an attempt was made to apply them to detailed investigations for the production of flood traces. The cultivated area located in Goa-eup, Gumi, where the embankment collapsed and inundated inundation occurred due to the impact of 6th Typhoon Sanba in 2012, was selected as rhe target area. To obtain optimal accuracy of UAV photogrammetry performance, the UAV images were taken under the optimal placement of 19 GCPs and then point cloud, DEM, and orthoimages were generated through image processing using Pix4Dmapper software. After applying CloudCompare's CSF Filtering to separate the point cloud into ground elements and non-ground elements, a finally corrected DEM was created using only non-ground elements in GRASS GIS software. The flood level and flood depth data extracted from the final generated DEM were compared and presented with the flood level and flood depth data from existing data as of 2012 provided through the public data portal site of the Korea Land and Geospatial Informatix Corporation(LX).