• Title/Summary/Keyword: Impact shock

Search Result 438, Processing Time 0.028 seconds

A Comparative Study on the Effect of Tamping Materials on the Impact Efficiency at Blasting Work (발파작업 시 충전매질에 따른 발파효과 비교 연구)

  • Bae, Sang-Soo;Han, Woo-Jin;Jang, Seung-Yup;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • This study simulated the shock wave propagation through the tamping material between explosives and hole wall at blasting works and verified the effect of tamping materials. The Arbitrary Lagrangian-Eulerian(ALE) method was selected to model the mixture of solid (Lagrangian) and fluid (Eulerian). The time series analysis was carried out during blasting process time. Explosives and tamping materials (air or water) were modeled with finite element mesh and the hole wall was assumed as a rigid body that can determine the propagation velocity and shock force hitting the hole wall from starting point (explosives). The numerical simulation results show that the propagation velocity and shock force in case of water were larger than those in case of air. In addition, the real site at blasting work was modeled and simulated. The rock was treated as elasto-plastic material. The results demonstrate that the instantaneous shock force was larger and the demolished block size was smaller in water than in air. On the contrary, the impact in the back side of explosives hole was smaller in water, because considerable amount of shock energy was used to demolish the rock, but the propagation of compression through solid becomes smaller due to the damping effect by rock demolition. Therefore, It can be proven that the water as the tamping media was more profitable than air.

Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation (충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계)

  • Kim, Young-Min;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.

Analysis of impact damage behavior of GFRP-strengthened RC wall structures subjected to multiple explosive loadings (복합 폭발하중을 받는 GFRP 보강 RC 벽체 구조물의 비선형 충격 손상거동 해석)

  • Noh, Myung-Hyun;Lee, Sang-Youl;Park, Tae-Hyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1033-1036
    • /
    • 2008
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with glass fiber reinforced polymer (GFRP) composites are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a GFRP-strengthened RC wall structure.

  • PDF

Analysis of the Ground Reaction Force of Arm Landing during Sports Aerobics (스포츠 에어로빅스 팔착지 동작의 지면 반력 분석)

  • Yoo, Sil
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.115-124
    • /
    • 2002
  • The purpose of this study is to analyze the ground reaction force of arm landing on arm and leg during sports aerobics. Subjects of this study were total 10 players of 5 males and 5 females who have are domain sports aerobics medalists more than the third place in national tournaments. The subjects jumped between the two ground reaction force analyzers, while landing their right hand on the front platform(#1) and their right leg on the rear platform(#2), and the data frequency was set to 200Hz. Findings of this study are as follows; More than 3 times of impact peak force of vertical reaction force acted on arm joint than on leg joint. And, when ground reaction force on foot increased, ground reaction force on hand decreased. 3 impact peaks of curve of ground reaction force were found - Impact Peak 1 incurred on the time the palm lands on the ground, Impact Peak 2 absorbing shock secondarily on wrist joint, and Active Peak incurred on the time of holding the weight while pushing out the severly bent elbow joint.

A Study on the Impact Fracture Modeling Techniques of Glass-Ceramic Spherical Dome (글라스 세라믹 구형 돔의 충격파괴 모델링 기법 연구)

  • Lee, Jung-Hee;Lee, Young-Shin;Kim, Jae-Hoon;Kong, Jeong-Pyo;Koo, Song-Hoe;Moon, Soon-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.226-231
    • /
    • 2007
  • This paper studied on the impact fracture modeling techniques of spherical dome with MACOR glass-ceramic. The glass ceramic material has bigger compressive strength than the tensile strength and endure well at high temperature. The fracture simulation under shock perssure was performed by the finite element method with nonlinear code LS-Dyna. The simulation was carried out by 3 type dome models under step impact pulse shape. 4-node shell element and 8-node solid element were used for analysis.

  • PDF

A Study on the Insulation Performance of Impact Sound Level by Striking Location of Floor Slab (바닥 슬라브의 가진 위치에 따른 차음성능에 관한 연구)

  • Song, Pil-Dong;Park, Myung-Kil;Ham, Jin-Sik
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2003.11a
    • /
    • pp.73-76
    • /
    • 2003
  • This paper is contents about method to measure interception performance of shock noise of floor slab of apartment house to be simple. In the case of interception performance of light floor impact sound level, according to measurement method, grade of sound insulation performance showed greatly differently. But, in the case of interception performance of heavy floor impact sound level, it was similar result in all measurement method. Therefore, use of simple method of measurement was examined by possible fact in case of interception performance of heavy floor impact sound level.

  • PDF

Measuring the Economic Impact of the Energy Price Changes in Korea (에너지가격변화의 경제적 효과에 관한 연구)

  • Kim, Suduk;Sonn, Yang-Hoon
    • Environmental and Resource Economics Review
    • /
    • v.10 no.4
    • /
    • pp.495-513
    • /
    • 2001
  • We investigate a practical method of calculating the impact of multiple domestic energy price change on the final demand, production, the export and import change, the change in the balance of payment of Korean economy. By combining an existing computable general equilibrium (CGE) model with the traditional input-output analysis with two additional assumptions on the price behavior, we provide a cost-effective method of analyzing the impact of multiple energy price changes on the domestic economy. The energy price shock we used in this paper is 0.127% increase weighted by the sectoral productions. The total impacts on price level and GDP are 1.258% and -0.940%, respectively. The impact on the total output (GDP and intermediate goods) is about -1.580%.

  • PDF

Impact Resistance Characteristics of HPFRCC Depending on Various Fiber Replacing Ratio (섬유혼입율 변화에 따른 HPFRCC의 내충격 특성)

  • Park, Yong-Jun;Kim, Dae-Gun;Mun, Gyeong-Sik;Han, Sang-Hyu;Kim, Gyu-Yong;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.75-76
    • /
    • 2015
  • This study has examined the impact resistance and blast resistance characteristics of HPFRCC as a research on impact resistance and blast resistance characteristics using high volume mortar and high velocity projectile for evaluating the protection performance of actual buildings as small quantity experiment of laboratory conditions is performed although there was an instance of performing research on mortar that has reinforced fiber followed by the rise of problems on the damage of human life and buildings created due to explosion and shock. As a result, the destruction loss area and depth have decreased in case of the surface compared to the rear side. As tensile strength and tenacity have increased with the increased fiber replacing ratio, a tendency of destruction loss area and depth getting decreased was shown as the impact resistance has increased.

  • PDF

Deformation Behavior of Zr-based Bulk Metallic Glass by Indentation under Different Loading Rate Conditions (다른 하중속도 조건에서 압입에 의한 벌크 금속유리의 변형거동)

  • Shin, Hyung-Seop;Chang, Soon-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.42-47
    • /
    • 2004
  • Metallic glasses are amorphous meta-stable solids and are now being processed in bulk form suitable for structural applications including impact. Bulk metallic glasses have many unique mechanical properties such as high yield strength and fracture toughness, good corrosion and wear resistance that distinguish them from crystalline metals and alloys. However, only a few studies could be found mentioning the dynamic response and damage of metallic glasses under impact or shock loading. In this study, we employed a small explosive detonator for the dynamic indentation on a Zr-based bulk amorphous metal in order to evaluate the damage behavior of bulk amorphous metal under impact loading. These results were compared with those of spherical indentation under quasi-static and impact loading. The interface bonded specimens were adopted to observe the appearances of subsurface damage induced during indentation under different loading conditions.

  • PDF