• Title/Summary/Keyword: Impact resistance

Search Result 1,037, Processing Time 0.033 seconds

An Experimental Study on the Impact Resistance of Concrete using Coal Ash and Fiber New Materials (석탄재 및 섬유신소재를 혼입한 콘크리트의 충격저항성에 관한 실험적 연구)

  • Park, Sung-Hyen;Park, Seong-Bum;Jang, Young-Il;Lee, Byung-Jae;Jun, Heum-Jin;Cho, Kwang-Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.431-432
    • /
    • 2009
  • This study was performed to verify the impact resistance of concrete using coal ash and fiber new materials. As the results of study, the impact resistance of concrete decreased as the mixing ratio of coal ash increased. When the fiber new materials(GF, HPSF) were mixed to the concrete, its resistance was increased.

  • PDF

Change of Stiffness and Impact-Resistance of Flush Door Depending on Core Composition (플러쉬문의 심재구성에 따른 강성도 및 내충격성의 변화)

  • 장상식
    • Journal of the Korea Furniture Society
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2001
  • This study was carried out to evaluate the feasibility of using HDF as surface panels as well as core materials for flush door manufacturing. Several core compositions were developed and applied to manufacture door specimens. Core materials were tested under bending load, door manufacturing process was analysed to find better way of using HDF for door manufacturing, and door specimens were tested under bending, twisting and impact loads. From this study, it was concluded that HDF can be used to manufacture quality flush doors. And it was desirable to use light color HDF as surface panels because dark color HDF caused a problem in manufacturing process by shadow shown through finishing veneer. HDF doors were light, and showed good quality and higher resistance against bending twisting and impact loads.

  • PDF

Study on Shock Resistance Design of TFT-LCD Module using Explicit Impact Analysis (TFT-LCD 모듈의 충격해석을 통한 내충격설계 연구)

  • Kim, J.G.;Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.24-29
    • /
    • 2010
  • TFT-LCD module with thin, small and layered structure makes its shock analysis very difficult and complicated. As TFT-LCD becomes more thinner, it is more difficult to assure its required shock resistance. Recently, the drop/impact simulation using the commercial explicit dynamic analysis software such as LS-DYNA3D is actively applied to assess the shock characteristics of TFT-LCD. In this study, the effects of analysis parameters and design modifications in the drop/impact simulation are carefully studied. the reliability of the present analysis results can be assured through the experimental verification.

Abrasion and Impact Wear Resistance of the Fe­based Hardfacing Weld by Dispersing the Recycled WC

  • Kang, N.H.;Chae, H.B.;Kim, J.K.;Kim, J.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • The abrasion and impact wear resistance were investigated on the hardfacing weld dispersed with the recycled hard metal(HM). The HM was composed of the tungsten carbide(WC) reinforced metal matrix composite. The cored wire filled with the 35 wt.% HM and 0­6 wt.% of the alloying element, Fe­75Mn­7C(FeMnC), was used for the gas metal arc(GMA) welding. The FeMnC addition to the 35 wt.% HM did not improve the abrasion wear property since the amount of the tungsten carbide formed was decreased with respect to the FeMnC amount. However, the 6 wt.% FeMnC addition to the 35 wt.% HM exhibited the better impact wear resistance than the hardfacing weld by the 40 wt.% HM.

  • PDF

The Impact of User Perception on Usage Intention : Focusing on the Moderating Role of Attitude of Acceptance and Resistance (기술제품에 대한 사용자 지각이 사용의도에 미치는 영향 : 수용적 태도와 저항의 매개적 역할을 중심으로)

  • Kim, Hyun-Kyung
    • Journal of Information Technology Applications and Management
    • /
    • v.16 no.2
    • /
    • pp.65-77
    • /
    • 2009
  • This study explores the major factors that are likely to affect the acceptance and resistance of innovative products and services. The TAM (Technology Acceptance Model) has been widely used for understanding consumer acceptance of new technology. This model displays perceived usefulness and perceived ease of use as antecedents of intention to adopt and use. However, research has reported a variety of preceding variables for technology acceptance. In addition, considering paradoxes of technology, research regarding both acceptance and resistance in an integrated model can explain consumer perception and behavior in detail. The results of this study states that relative benefits, degree of innovation in technology, perceived usefulness and perceived ease of use have had positive influence on the intention to adopt but negative impact on that of resistance. However, alterations of usage and perceived risk positively affects resistance, but also have negative effects on the intention to adopt. Finally, intention to adopt has comparatively greater influence than that of resistance on intention to use. Theoretical and managerial implications of the results are also discussed.

  • PDF

Impact Resistance Evaluation of RC Beams Strengthened with Carbon FRP Sheet and Steel Fiber (CFRP 시트 및 강섬유로 보강된 RC 보의 충격저항 성능 평가)

  • Cho, Seong-Hun;Min, Kyung-Hwan;Kim, Yun-Ji;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.719-725
    • /
    • 2010
  • The analysis and experimental program of reinforced concrete (RC) structures for resistance against such extreme loads as earthquake, blast, and impact have been carried by many researchers and designers. Under the extreme loads, a large amount of energy is suddenly exerted to the structure, hence if the structure fails to absorb the impact energy, catastrophic collapse may occur. To prevent catastrophic collapse of structures, reinforced concrete must have adeguate toughness or it needs to be strengthened. The FRP strengthening method and SFRC are studied widely in resistance of impact load because of their high energy absorption capacity. In this study, drop weight impact tests were implemented to evaluate the impact resistance of SFRC and FRP strengthened RC beam while the total steel fiber volume fractions was fixed at 0.75% carbon FRP flexural strengthened RC beams. Futhermore, to prevent the shear-plug cracks when the impact load strikes the beams, additional FRP shear strengthening method are applied. The experimental, results showed that the FRP strengthened RC SFRC beams has high resistance of shear-plug cracks and crack width and SFRC has high resistance of concrete spalling failure compared to normal RC beams. The FRP flexural and shear strengthening RC beams has weakness in the spalling failure because the impact load concentrated the concrete face which is not strengthened with FRP sheets.

Engineering Properties of Steel Fiber Reinforced High Performance Concrete

  • Kim Young Ik;Sung Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.7
    • /
    • pp.55-67
    • /
    • 2004
  • In this paper, the flowability, strengths, impact resistance and sulfuric acid resistance of steel fiber reinforced high performance concrete (SFHPC) for the steel fiber content and fly ash and blast furnace slag as admixtures were presented. For evaluating flowability particularly, tests of slump flow, box-type passing ability and L-type filling ability were performed. The slump flow of SFHPC was some decreased with increase of the steel fiber content. At the box-type passing ability, the difference of box height of SFHPC is greatly increased with increasing the fiber content. The L-type filling ability of SFHPC was not excellent above $0.75\% of the steel fiber content. Also, the compressive strength of SFHPC was decreased with increase of the steel fiber content, but the flexural strength of SFHPC was much higher than that of the concrete without the steel fiber. At the impact resistance, drop number of SFHPC for reaching final fracture was increased with increase of the fiber content. Also, the drop number for reaching initial fracture of lmm was increased with increase of the fiber content. At the sulfuric acid resistance, 4-week weight change of SFHPC with the steel fiber was almost similarity that of HPC without the steel fiber and was in the range of 73.6 to 81.5.

Design for Improving Impact Resistance of Microwave Oven Using Drop/Impact Analysis (낙하/충격해석을 통한 전자렌지의 내충격설계)

  • Kim, J.G.;Kim, J.Y.;Kim, H.S
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.53-58
    • /
    • 2009
  • The importance of cost reduction has grown bigger to ensure the competetive power of products in the electric home appliances industry. Thus, it is necessary to assess the reliability due to drop-impact happenning in process of distribution of microwave ovens with the panel and cavity of thinner thickness for cost reduction. In the present study, the drop/impact simulation using the explicit code LS-DYNA3D has been carried out for improving the impact resistance of a microwave oven. This CAE-based design approach can be successfully applied to enhance the deteriorated dynamic behavior under the impact conditions of dropping height 70cm according to ISTA procedure 2A.

  • PDF