• 제목/요약/키워드: Impact loading model

검색결과 234건 처리시간 0.025초

주기하중을 받고 있는 금속의 시간의존적 소성 모델 비교 (A Rate Dependent Plasticity Model under Cyclic Loading of Metals)

  • 김동건
    • 복합신소재구조학회 논문집
    • /
    • 제4권1호
    • /
    • pp.25-32
    • /
    • 2013
  • In real world applications, the response of structures may be dependent on the rate of loading and thus can be affected by transient loading, especially when the rate of loading is significant. In such situations, the rate of loading may become a major issue to understand structures during earthquake excitation or under blast or high velocity impact. In some cases, the rate effect on structures under strong earthquake excitation cannot be ignored when attempting to understand inelastic behavior of structures. Many researchers developed the constitutive theories in cyclic plasticity and viscoplasticity. In this study, numerical simulation by cyclic visocoplasticity models is introduced and analyzed. Finally, the analytical results are compared with experimental results as a means to evaluate and verify the model.

미시역학 소성모델을 이용한 충격하중을 받는 보강판의 파단 예측 (Fracture Estimation of Stiffened Plates under Impact Loading using Micromechanics Plasticity Model)

  • 정준모;조상래;김경수
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.611-621
    • /
    • 2009
  • This paper first reviews the physical meanings and the expressions of two representative strain rate models: CSM (Cowper-Symonds Model) and JCM (Johnson-Cook Model). Since it is known that the CSM and the JCM are suitable for low-intermediate and intermediate-high rate ranges, many studies regarding marine accidents such as ship collision/grounding and explosion in FPSO have employed the CSM. A formula to predict the material constant of the CSM is introduced from literature survey. Numerical simulations with two different material constitutive equations, classical metal plasticity model based on von Mises yield function and micromechanical porous plasticity model based on Gurson yield function, have been carried out for the stiffened plates under impact loading. Simulation results coincide with experimental results better when using the porous plasticity model.

Multi-solver 기법을 이용한 강판보강 콘크리트 패널의 충돌 수치 시뮬레이션 (Numerical simulation of steel plate reinforced concrete panels exposed to impact loading using multi-solver technique)

  • 노명현;이상열;박대효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.590-595
    • /
    • 2008
  • In the present paper, the impact damage behavior of steel plate reinforced concrete panels exposed to shock impulsive loading and fragment impact loading is investigated. To evaluate the retrofit performance of a steel-strengthened concrete panels, a numerical experiment using a numerical simulation with AUTODYN, an explicit analysis program is introduced because a real explosion experiment requires the vast investment and expense for facilities as well as the deformation mechanisms are too complicated to be reproduced with a conventional closed-form analyses. The model for the analysis is simplified and idealized as a two-dimensional and axisymmetric case controled with geometry, boundary condition and material properties in order to obtain a resonable computation time. As a result of the analysis, panels subject to either shock loading or fragment loading without the steel plate reinforcement experience the perforation with spalled fragments. In addition, the panels reinforced with steel plate can prevent the perforation and provide the good mechanical effect such as the increase of global stiffness and strength through the composite action between the concrete slab and the steel plate.

  • PDF

Safety assessment of nuclear fuel reprocessing plant under the free drop impact of spent fuel cask and fuel assembly part I: Large-scale model test and finite element model validation

  • Li, Z.C.;Yang, Y.H.;Dong, Z.F.;Huang, T.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2682-2695
    • /
    • 2021
  • This paper aims to evaluate the structural dynamic responses and damage/failure of the nuclear fuel reprocessing plant under the free drop impact of spent fuel cask (SFC) and fuel assembly (FA) during the on-site transportation. At the present Part I of this paper, the large-scale SFC model free drop test and the corresponding numerical simulations are performed. Firstly, a composite target which is composed of the protective structure, i.e., a thin RC plate (representing the inverted U-shaped slab in the loading shaft) and/or an autoclaved aerated concrete (AAC) blocks sacrificial layer, as well as a thick RC plate (representing the bottom slab in the loading shaft) is designed and fabricated. Then, based on the large dropping tower, the free drop test of large-scale SFC model with the mass of 3 t is carried out from the height of 7 m-11 m. It indicates that the bottom slab in the loading shaft could not resist the free drop impact of SFC. The composite protective structure can effectively reduce the damage and vibrations of the bottom slab, and the inverted U-shaped slab could relieve the damage of the AAC blocks layer dramatically. Furthermore, based on the finite element (FE) program LS-DYNA, the corresponding refined numerical simulations are performed. By comparing the experimental and numerical damage and vibration accelerations of the composite structures, the present adopted numerical algorithms, constitutive models and parameters are validated, which will be applied in the further assessment of drop impact effects of full-scale SFC and FA on prototype nuclear fuel reprocessing plant in the next Part II of this paper.

Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method

  • Han, Pengfei;Liu, Jingbo;Fei, Bigang
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.326-342
    • /
    • 2022
  • Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method are performed in this paper. The decoupling method is applying impact force time-history curves on impact area of the shield building to study impact damage effects on structure. The coupling method is using a model including aircraft and shield building to perform simulation of the entire impact process. Impact force time-history curves of the fuselage, wing and engine and their total impact force time-history curve are obtained by the entire aircraft normally impacting the rigid wall. Taking aircraft structure and impact progress into account some loading areas are determined to perform some comparative analyses between decoupling method and coupling method, the calculation results including displacement, plastic strain of concrete and stress of steel plate in impact area are given. If the loading area is determined unreasonably, it will be difficult to assess impact damage of impact area even though the accurate impact force of each part of aircraft obtained already. The coupling method presented at last in this paper can more reasonably evaluate the dynamic response of the shield building than the decoupling methods used in the current nuclear engineering design.

센서 동역학을 고려한 충격응답해석 (Analysis of Impact Responses Considering Sensor Dynamics)

  • 류봉조;권병희;안길영;오일성;이규섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.731-736
    • /
    • 2002
  • Impact is the most common type of dynamic loading conditions that give rise to impulsive forces and affects the vibrational characteristics of mechanical systems . Since the real impact force and acceleration at the contact surface are measured indirectly through the sensors, the measured outputs can be a little different from the real impact responses. In this study, the contact force model based on the Hertz law is proposed in order to predict the impact force correctly. To investigate the influence of the position of the sensor attached to the impacting bodies, the two kinds of sensors were used. Finally, the contact force model obtained by drop test was applied to predict the impact force between the moving part and the stopper in magnetic contactor.

  • PDF

벨트 하중에 따른 고령운전자의 흉곽 상해 예측 (Prediction of Thoracic Injury of Older Occupant from Belt Loading)

  • 한인석;김영은
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.799-806
    • /
    • 2009
  • Thoracic injury from restraint loading is the principle causative factor of death, which was shown to be particularly significant for older drivers. To characterize thoracic response to belt loading of older drivers, detailed finite element models of the adult and aged thorax were developed. The geometry of the 50th percentile adult male was chosen for the adult FE model. The thoracic FE model was validated against data obtained from results of PMHS pendulum impact tests. The quantified patterns of age-related shape and well-established material changes were applied to the adult model to develop the aged model. Belt force and chest deflection were applied to the developed two types of models. Rib and clavicle fracture risk obviously increased in the aged model. This finding showed that larger rib angle and reduced material properties of the ribcage produced more higher risk of injury in the older driver.

중앙분리대 사고자료 분석을 통한 설계 하중모델 개발 및 고성능 중앙분리대 설치 위치 선정 (Vehicular Impact Model and Installation Locations for a High Performance Median)

  • 정유석;이일근;이재하;김우석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권1호
    • /
    • pp.63-70
    • /
    • 2019
  • 고속도로 통행량 및 주행속도 증가로 인해 중앙분리대 충돌사고가 빈번히 발생하고 있다. 특히 차량의 대형화와 통행 중차량의 증가로 인해 중앙분리대 충돌사고 시 중앙분리대의 방호 성능을 초과하는 사고 역시 증가하는 추세이다. 따라서 고속도로의 안전성을 높이기 위해 고성능 중앙분리대의 개발이 필요하다. 본 논문은 고성능 중앙분리대 설치 필요에 따라 성능개선수준(하중모델) 및 설치위치 제안을 목적으로 하고 있다. 이를 위해 고속도로 중앙분리대 충돌 사고 자료 분석을 통해 고성능 중앙분리대 개발을 위한 성능 개선 수준 SB6등급(충격도 = 420 kJ, 하중: 25 ton, 충돌속도: 80 km/h, 충돌각도: $15^{\circ}$)으로 제안하고 운전자의 운전행태 분석을 통해 개량 및 신설 고성능 중앙분리대 설치 위치를 제안하였다.

Effect of fiber content on the performance of UHPC slabs under impact loading - experimental and analytical investigation

  • Muhammad Umar Khan;Shamsad Ahmad;Mohammed A. Al-Osta;Ali Husain Algadhib;Husain Jubran Al-Gahtani
    • Advances in concrete construction
    • /
    • 제15권3호
    • /
    • pp.161-170
    • /
    • 2023
  • Ultra-high-performance concrete (UHPC) is produced using high amount of cementitious materials, very low water/cementitious materials ratio, fine-sized fillers, and steel fibers. Due to the dense microstructure of UHPC, it possesses very high strength, elasticity, and durability. Besides that, the UHPC exhibits high ductility and fracture toughness due to presence of fibers in its matrix. While the high ductility of UHPC allows it to undergo high strain/deflection before failure, the high fracture toughness of UHPC greatly enhances its capacity to absorb impact energy without allowing the formation of severe cracking or penetration by the impactor. These advantages with UHPC make it a suitable material for construction of the structural members subjected to special loading conditions. In this research work, the UHPC mixtures having three different dosages of steel fibers (2%, 4% and 6% by weight corresponding to 0.67%, 1.33% and 2% by volume) were characterized in terms of their mechanical properties including facture toughness, before using these concrete mixtures for casting the slab specimens, which were tested under high-energy impact loading with the help of a drop-weight impact test setup. The effect of fiber content on the impact energy absorption capacity and central deflection of the slab specimens were investigated and the equations correlating fiber content with the energy absorption capacity and central deflection were obtained with high degrees of fit. Finite element modeling (FEM) was performed to simulate the behavior of the slabs under impact loading. The FEM results were found to be in good agreement with their corresponding experimentally generated results.

Bending characteristics of corroded reinforced concrete beam under repeated loading

  • Fang, Congqi;Yang, Shuai;Zhang, Zhang
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.773-790
    • /
    • 2013
  • Bending behaviors of corroded reinforced concrete (RC) beams under repeated loading were investigated experimentally. A total of twenty test specimens, including four non-corrosion and sixteen corrosion reinforced concrete beams, were prepared and tested. A numerical model for flexural and cracking behaviors of the beam under repeated loading was also developed. Effects of steel corrosion on reinforced concrete beams regarding cracking, mid-span deflection, stiffness and bearing capacity of corroded beams were studied. The impact of corrosion on bond strength as the key factor was investigated to develop the computational model of flexural capacity. It was shown from the experimental results that the bond strength between reinforcement and concrete had increased for specimen of low corrosion levels, while this effect was changed when the corrosion level was higher. It was indicated that the bearing capacity of corrosion beam increased even at a corrosion level of about 5%.