Browse > Article
http://dx.doi.org/10.11004/kosacs.2013.4.1.025

A Rate Dependent Plasticity Model under Cyclic Loading of Metals  

Kim, Dongkeon (Central Research Institute, Korea Hydro & Nuclear Power Co., LTD.)
Dargush, Gary F. (Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York)
Publication Information
Journal of the Korean Society for Advanced Composite Structures / v.4, no.1, 2013 , pp. 25-32 More about this Journal
Abstract
In real world applications, the response of structures may be dependent on the rate of loading and thus can be affected by transient loading, especially when the rate of loading is significant. In such situations, the rate of loading may become a major issue to understand structures during earthquake excitation or under blast or high velocity impact. In some cases, the rate effect on structures under strong earthquake excitation cannot be ignored when attempting to understand inelastic behavior of structures. Many researchers developed the constitutive theories in cyclic plasticity and viscoplasticity. In this study, numerical simulation by cyclic visocoplasticity models is introduced and analyzed. Finally, the analytical results are compared with experimental results as a means to evaluate and verify the model.
Keywords
Rate dependent; viscoplasticity; cyclic plasticity; Constitutive model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abdel-Karim, M. and N. Ohno. (2000). "Kinematic Hardening Model Suitable for Ratchetting with Steady-State." Int. J. Plast., Vol. 16, pp. 225-240.   DOI   ScienceOn
2 Bodner, S. R. and Partom, Y. (1972). "A Large Deformation Elastic-viscoplastic Analysis of a Thick-walled Spherical Shell." ASME, J. Appl. Mech., Vol. 39, pp. 751-757.   DOI
3 Chaboche, J. L. (1977). "Viscoplastic Constitutive Equations for the Description of Cyclic and Anisotropic Behavior of Metals." Bull. Acad. Polon. Sci. Ser. Sci. Tech., Vol. 25. pp. 33-42.
4 Chaboche. J. L., Rousselier. (1983). "On the Plastic and Viscoplastic Constitutive Equations-Part I: Rule Developed with Internal Variable Concept." Journal of Pressure Vessel Technology, Vol. 105, No. 2, pp. 153-158.   DOI
5 Chaboche. J. L. (1989). "Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity." IInt. J. Plast., Vol. 5, pp. 247-302.   DOI   ScienceOn
6 Chang, K. C. and Lee, G. C. (1987). "Strain Rate Effect on Structural Steel Under Cyclic Loading." J. Engrg. Mech, ASCE, Vol. 113, No. 9, pp. 1292-1301.   DOI   ScienceOn
7 Dunne, F. and Petrinic, N. (2005). Introduction to Computational Plasticity, Oxford, University Press.
8 Ellyin, F. and Xia, Z. (1991). "A Rate-Dependent Inelastic Constitutive Model, Part I: Elastic-Plastic Flow." J. Engng. Mater. Technol. Trans., ASME, Vol. 113, pp. 314-323.   DOI
9 Hart, E. W. (1976). "Constitutive Relations for the Nonelastic Deformation of Metals." ASME, J. Eng. Mat. Tech, Vol. 98, pp. 193-201.   DOI
10 Hibbit, Karlsson and Sorensen, Inc., (2008). Abaqus user's guide, v. 6.8. HKS Inc. Pawtucket, RI, USA.
11 Kang, G. Z. and Gao, Q. (2004). "Temperature-dependent cyclic deformation of SS304 stainless steel under non-proportionally multi axial load and its constitutive modeling." Key Eng. Mater. Vol. 275-276, pp. 247-252.
12 Kang, G. Z., Kan, Q. H., and Zhang, J. (2006). "Time - dependent ratcheting experiments of SS304 stainless steel." Int. J. Plast., Vol. 22, pp. 858-894.   DOI   ScienceOn
13 Krempl, E. (1979). "An Experimental Study of Room Temperature Rate Sensitivity, Creep and Relaxation of AISI Type 304 Stainless Steel." J. Mech. Phys. Solids., Vol. 27. pp. 363.   DOI   ScienceOn
14 Lemaitre, J. (2001). Handbook of Materials Behavior Models. Academic Press.
15 McDowell, D. L. (1992). "A Nonliear Kinematic Hardening Theory for Cyclic Thermoplasticity and Thermoviscoplasticity." Int. J. Plast., Vol. 8, pp. 695-728.   DOI   ScienceOn
16 Miller, A. (1976). "An Inelastic Consitutive Model for Monotonic, Cyclic, and Creep Deformation." ASME, J. Eng. Mat. Tech, Vol. 98, pp. 97-113.   DOI
17 Ohno, N. and Wang, J. D. (1993). "Kinematic Hardening Rules with Critical State for Activation of Dynamic Recovery, Part I, Formulation and Basic Features for Ratchetting Behavior." Int. J. Plast., Vol. 9, pp. 375-390.   DOI   ScienceOn
18 Tanaka, E. and Yamada, H. (1993). "Cyclic creep, mechanical ratchetting and amplitude history dependence of modified 9Cr-1Mo steel and evaluation of unified constitutive models." Trans. JSME(A), Vol. 59, pp. 2837-2843.   DOI
19 Ramaswamy, V. G., Stouffer, D. C., and Laflen, J. H. (1990). "A Unified Constitutive Model for the Inelastic Uniaxial Response of Rene 80 at Temperatures Between 538C and 982C." J. Eng. Mat. Tech, 112.
20 Robinson, D. N., Pugh, C. E., and Corum, J. M. (1976) "Constitutive Equations for Describing High - temperature Inelastic Behavior of Structural Alloys, in Specialists Meeting on High - temperature Structural Design Technology of LMFBRs, IAEA report IWGFR/11." International Atomic Energy Agency, pp. 44-57.
21 Tanaka, E. (1994). "A non-proportionality Parameter and a Viscoplastic Constitutive Model Taking into Amplitude Dependences and Memory Effects of Isotropic Hardening." Eur. J. Mech. A/Solids, 13.
22 Yaguchi, M. and Takahashi, Y. (2000). "A viscoplastic constitutive model incorporating dynamic strain aging effect during cyclic deformation conditions." Int. J. Plast., Vol. 16, pp. 241-262.   DOI   ScienceOn
23 Yaguchi, M. and Takahashi, Y. (2005). "Ratchetting of viscoplastic material with cyclic softening. Part 2. Application of constitutive models." Int. J. Plast., Vol. 21, pp. 835-860.   DOI   ScienceOn