• Title/Summary/Keyword: Impact fatigue

Search Result 411, Processing Time 0.033 seconds

Effect of Stress Ratio on Fatigue Crack Growth in Mixed Mode(I+II) (혼합모드(I+II)에서 피로균열진전에 미치는 응력비의 영향)

  • Gong, Byeong-Chae;Choi, Myoung-Su;Kwon, Hyun-Kyu;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.90-96
    • /
    • 2009
  • The loading condition of actual construction works is complex. The shear effect of mixed-mode load component are crack propagation mechanism in step larger than the crack initial mechanism. Therefore, in this study received a mixed-mode loading on fatigue crack stress ratio on crack propagation path and speed of progress to learn whether stress affects crack propagation. ${\Delta}$ P a constant state of fatigue tests in Mode I, II give the same stress ratio, frequency 10Hz, sinusoidal waveform was used. A lower stress ratio fatigue crack propagation angle is small. This is less affected by the Mode II. Therefore, a mixed-mode fatigue crack propagation is to progress by the Mode. Stress ratio in a mixed mode crack in the path of progress and found a lot of impact.

  • PDF

The Improvement of SNCM220 Winding Shaft in Mechanical Properties by Heat Treatment (SNCM220 강 권축의 열처리를 통한 기계적성질 향상)

  • 이호성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.61-67
    • /
    • 1998
  • To find out the reason of fracture, specimens were made from the fractured winding shaft and the mechanical properties as well as their microstructures were investigated. Several heat treatments. including caburizing and tempering were carried out to improve the microstructure, mechanical properties, fatigue crack propagation and rotating bending fatigue characteristics. Through these experiments, following conclusions were obtained. (1) Carburized and tempered specimens showed greatly improved mechanical properties including impact energy, hardness and strength. (2) The fatigue strength of the carburized and tempered specimens increased more than twice than that of the original fractured winding shaft. (3) Crack propagation of the carburized and tempered specimens were faster than that of the original fractured speciens under the same △K. However, it is believed that, in the early stage, the fatigue crack initiation and growth for the carburized and tempered specimen is more difficult.

  • PDF

Effect of Peening on Low Temperature Fatigue Strength Behavior of STABILIZER BAR in Suspension Material (현가장치 STABILIZER BAR의 저온피로강도에 미치는 쇼트피닝의 영향)

  • Jung, Jae-Wook;Park, Keyoung-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.353-358
    • /
    • 2004
  • We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{circ}C$, $-60^{circ}C$, $-80^{circ}C$, and $-100^{circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. And there is a difference between shot peened specimen and unpeened specimen. The purpose of this study is to predict the behavior of fatigue crack propagation as one of fracture mechanics on the compressive residual stress. Fatigue crack growth rate of shot peened metal was lower than that of unpeened metal. The compressive residual stress made an impact on tension and compression of the plasticity deformation in fatigue crack plasticity zone. That is. the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation.

  • PDF

An Analysis on Fatigue Fracture of Nuclear Pump Impeller Alloys by Ultrasonic Vibratory Cavitation Erosion (원전 해수 펌프 임펠러 합금의 케비테이션 피로 손상 해석)

  • Hong Sung-Mo;Lee Min-Ku;Kim Gwang-Ho;Rhee Chang-Kyu
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.1
    • /
    • pp.35-42
    • /
    • 2006
  • In this study, the fatigue properties on the cavitation damage of the flame quenched 8.8Al-bronze (8.8Al-4.5Ni-4.5Fe-Cu) as well as the current nuclear pump impeller materials (8.8Al-bronze, STS316 and SR50A) has been investigated using an ultrasonic vibratory cavitation test. For this the impact loads of cavitation bubbles generated by ultrasonic vibratory device quantitatively evaluated and simultaneously the cavitation erosion experiments have been carried out. The fatigue analysis on the cavitation damage of the materials has been made from the determined impact load distribution (e.g. impact load, bubble count) and erosion parameters (e.g. incubation period, MDPR). According to Miner's law, the determined exponents b of the F-N relation ($F^b$ N = Constant) at the incubation stage (N: the number of fracture cycle) were 5.62, 4.16, 6.25 and 8.1 for the 8.8Al-bronze, flame quenched one, STS316 and SR50A alloys. respectively. At the steady state period, the exponents b of the F-N' curve (N': the number of cycle required for $1{\mu}m$ increment of MDP) were determined as 6.32, 5, 7.14 and 7.76 for the 8.8Al-bronze, flame quenched one, STS316, and SR50A alloys, respectively.

A study on the A.C. breakdown characteristics of cross-linked polyethylene dielectrics subjected to the impulse fatigue (충격피로를 받은 가교폴리에틸렌 유전체의 교류절연파괴 특성에 관한 연구)

  • 곽영순;손제봉
    • 전기의세계
    • /
    • v.29 no.9
    • /
    • pp.577-583
    • /
    • 1980
  • This paper is intended to analyze the characteristics of breakdown of polyethylene dielectrics, which was caused by A.C. voltage after impulse fatigue, by using weibull distribution. The impact of impulse fatigue upon the accurance and development of tree and the impact of void upon treeing are investigated. From the results of experiment, it is found that the life of polyethylene subjected to impulse voltage is shorter than that not subjected to impulse voltage. And in the case of void existence, it's life comes to be short remarkably, and the breakdown is almost concentrated on its initiation. From the results observed by the microscope, it is found that the treeing phenomena varies according as whether impulse voltage was applied to polyethylene before being applied to A.C. voltage and whether polyethylene has void or not.

  • PDF

Predictors of Videoconference Fatigue: Results from Undergraduate Nursing Students in the Philippines

  • Oducado, Ryan Michael F.;Fajardo, Maria Teresa R.;Parreno-Lachica, Geneveve M.;Maniago, Jestoni D.;Villanueva, Paulo Martin B.;Dequilla, Ma. Asuncion Christine V.;Montano, Hilda C.;Robite, Emily E.
    • Asian Journal for Public Opinion Research
    • /
    • v.9 no.4
    • /
    • pp.310-330
    • /
    • 2021
  • Driven by the need for remote learning, the COVID-19 pandemic led to the rise of use of videoconferencing tools. Scholars began noticing an emerging phenomenon of feeling tired and exhausted during virtual meetings. This study determined the predictors of videoconference or Zoom fatigue among nursing students in a large, private, non-sectarian university in the Philippines. This cross-sectional online survey involves 597 nursing students in the Philippines using the Zoom Exhaustion and Fatigue Scale. Multiple linear regression analysis was used to examine predictors of videoconference fatigue. Results indicated that nursing students experienced high levels of videoconference fatigue. Gender, self-reported academic performance, Internet connection stability, attitude toward videoconferencing, frequency, and duration of videoconferences predicted videoconference fatigue. The regression model explained 25.3% of the variances of the videoconference fatigue. Videoconference fatigue is relatively prevalent and may be taking its toll on nursing students. Developing strategic interventions that can protect or mitigate the impact of fatigue during virtual meetings is needed.

A study on the fatigue and fracture characteristics of localized nuclear reactor vessel material (국산 원자로용기 재료의 피로 및 파괴특성 연구)

  • Jeong, Sun-Eok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1626-1635
    • /
    • 1997
  • It is important to ensure the reliability of the first localized reactor vessel steel. To satisfy with this purpose, a study on the impact/hardness, low cycle fatigue(LCF), crack growth rate(da/dN) and fracture toughness( ) of base material(BM) and weld metal(WM) were performed under room temperature air and corrosion conditions. A summary of the results is as folows : (1) Charpy impact absorbed energy of BM was the highest value, heat affected zoon(HAZ) and the lowest, WM. The hardness of BM was similar to HAZ. (2) Coefficients of Manson equation using the monotonic tensile test data were obtained for the present material. (3) The effects of stress ratio and ambient (120.deg. C and NaCl) condition on da/dN were investigated, da/dN with NaCl condition expressed the highest value. (4) The results of Charpy V-notch impact test had good correlation with $K_{IC}$ characteristics and the lowest curve of $K_{IC}$ for BM was derived, more researches about WM and HAZ are required hereafter.

Experimental Investigation on Dynamic Behavior of Steel Fiber Reinforced Concrete Structures (강섬유콘크리트구조물의 다양한 동적거동에 관한 실험적 연구)

  • Kang, Bo-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.431-439
    • /
    • 2010
  • In this paper, dynamic behavior of steel fiber reinforced concrete(SFRC) by experimental method is discussed. Because of its improved ability to dissipate energy, impact resistance and fatigue behavior, SFRC has a better dynamic behavior than that of plain concrete. Dynamic behavior is influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete and the stress level. Impact resistance and fatigue behavior in the SFRC has been evaluated from dynamic experimental test data at various levels of cracked states in the elements.

Investigation of damaged formwork timber beam retrofitting with anchoraged CFRP strip under different loading

  • Abdullah TURER;Ozgur ANIL;Abdulkadir CEVIK;R. Tugrul Erdem
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.689-703
    • /
    • 2024
  • Construction of high-rise structures, formwork systems that can be installed quickly, resistant to external loads, can be used more than once, have become a necessity. Timber and composite timber materials are preferred in the formation of such formwork systems due to their durability, ease of assembly, light weight and easy to use more than one time. Formwork beams are the most commonly used structural component in the formation of such formwork systems, and these beams can be damaged for different reasons during their lifetime. In this study, H20 top P type timber formwork beams with 1800 and 2450 mm length which is among the products of DOKA(c) company is damaged under the effect of static loading up to a high load level of 85% of the maximum ultimate capacity and after being retrofitted using anchored CFRP strips, performance and behavior of the beams under the influence of various loading types such as static, fatigue and impact are investigated experimentally. Two different lengths of retrofitted timber formwork beams were tested by applying monotonic static, fatigue and impact loading and comments were made about the effects of the retrofit method on performance under different loading types.

Rating of steel bridges considering fatigue and corrosion

  • Lalthlamuana, R.;Talukdar, S.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.643-660
    • /
    • 2013
  • In the present work, the capacity ratings of steel truss bridges have been carried out incorporating dynamic effect of moving vehicles and its accumulating effect as fatigue. Further, corrosion in the steel members has been taken into account to examine the rating factor. Dynamic effect has been considered in the rating procedure making use of impact factors obtained from simulation studies as well as from codal guidelines. A steel truss bridge has been considered to illustrate the approach. Two levels of capacity ratings- the upper load level capacity rating (called operating rating) and the lower load level capacity rating (called inventory rating) were found out using Load and Resistance Factor Design (LRFD) method and a proposal has been made which incorporates fatigue in the rating formula. Random nature of corrosion on the steel member has been taken into account in the rating by considering reduced member strength. Partial safety factor for each truss member has been obtained from the fatigue reliability index considering random variables on the fatigue parameters, traffic growth rate and accumulated number of stress cycle using appropriate probability density function. The bridge has been modeled using Finite Element software. Regressions of rating factor versus vehicle gross weight have been obtained. Results show that rating factor decreases when the impact factor other than those in the codal provisions are considered. The consideration of fatigue and member corrosion gives a lower value of rating factor compared to those when both the effects are ignored. In addition to this, the study reveals that rating factor decreases when the vehicle gross weight is increased.