• Title/Summary/Keyword: Impact damages

Search Result 300, Processing Time 0.022 seconds

Characteristics of Low Velocity Impact Responses due to Interface Number and Stacking Sequences of CFRP Composite Plates (CFRP 복합적층판의 적층배향.계면수에 따른 저속충격특성)

  • Im, Kwang-Hee;Park, No-Sick;Ra, Seung-Woo;Kim, Young-Nam;Lee, Hyun;Sim, Jae-Ki;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.48-56
    • /
    • 2001
  • In this paper, this study aims at the evaluation on the characteristics of CFRP laminate plates using a falling weight impact tester. The experiment was conducted on several laminates of different orientation. A system was built far measur- ing the impact strength of CFRP laminates in consideration of stress wave propagation theory using a falling weight impact tester. Delamination areas of impacted specimens for the different ply orientation were measured with ultrasonic C- scanner to find correlation between impact energy and delamination area. Absorbed energy of quasi-isotropic specimen having flour interfaces was higher than that of orthotropic laminates with two interfaces. The more interfaces, the greater the energy absorbed. The absorbed energy oft hybrid specimen containing a GFRP layer was higher than that of normal specimens.

  • PDF

Prediction of Bow Flare Impact Pressure and Its Application to Ship Structure Design - Container Ship and PCC - (선수 플레어 충격압력 추정과 구조설계에의 응용 - 콘테이너선과 자동차 운반선 -)

  • 김용직;신기석;신찬호;강점문;김만수;김성찬;오수관;임채환;김대헌
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.29-36
    • /
    • 2003
  • In rough seas, bow-flare regions of the fine ships (container ship and PCC) are subject to high impact pressures due to the bow-flare slamming. And many ships suffer structural damages in that region, even though they were built under the bow structure strengthening rules of the ship classes. So, a new design method for bow-flare structure is highly required. In this paper, a new prediction method of the bow-flare impact pressure (in terms of equivalent static pressure) acting on the fine ships' bow is presented. This method is based on the 11 fine ships' damage analysis and the mechanisms of water entry impact and breaking wave impact. Calculation results of the bow-flare impact pressure and the shell plate thickness are shown and discussed. Through the example calculations, it was found that the present method is useful for the structure design of the fine ships' bow.

Prediction of Bow Flare Impact Pressure and Its Application to Ship Structure Design - Tanker and Bulk Carrier - (선수 플레어 충격압력 추정과 구조설계에의 응용 - 탱커와 산적화물선 -)

  • 김용직;신기석;신찬호;강점문;김만수;김성찬;오수관;임채환;김대헌
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.22-28
    • /
    • 2003
  • In rough seas, bow-flare regions of the full ships (tanker and bulk carrier) are subiect to high impact pressures due to the on-coming breaking waves. And many ships suffer structural damages in that region, even though they were built under the bow structure strengthening rules of the ship classes. So, a new design method for bow-flare structure is highly required. In this paper, a new prediction method of the bow-flare impact pressure (in terms of equivalent static pressure) acting on the full ships' bow is presented. This method is based on the 6 full ships' damage analysis and the breaking wave impact mechanism. Calculation results of the bow-flare impact pressure and the shell plate thickness are shown and discussed. Through the example calculations, it was found that the present method is useful for the structure design of the full ships' bow.

Identification of impact forces on composite structures using an inverse approach

  • Hu, Ning;Matsumoto, Satoshi;Nishi, Ryu;Fukunaga, Hisao
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.409-424
    • /
    • 2007
  • In this paper, an identification method of impact force is proposed for composite structures. In this method, the relation between force histories and strain responses is first formulated. The transfer matrix, which relates the strain responses of sensors and impact force information, is constructed from the finite element method (FEM). Based on this relation, an optimization model to minimize the difference between the measured strain responses and numerically evaluated strain responses is built up to obtain the impact force history. The identification of force history is performed by a modified least-squares method that imposes the penalty on the first-order derivative of the force history. Moreover, from the relation of strain responses and force history, an error vector indicating the force location is defined and used for the force location identification. The above theory has also been extended into the cases when using acceleration information instead of strain information. The validity of the present method has been verified through two experimental examples. The obtained results demonstrate that the present approach works very well, even when the internal damages in composites happen due to impact events. Moreover, this method can be used for the real-time health monitoring of composite structures.

Nondestructive Contactless Sensing of Concrete Structures using Air-coupled Sensors

  • Shin, Sung-Woo;Hall, Kerry S.;Popovics, John S.
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.17-22
    • /
    • 2008
  • Recent developments in contactless, air-coupled sensing of seismic and ultrasonic waves in concrete structures are presented. Contactless sensing allows for rapid, efficient and consistent data collection over a large volume of material. Two inspection applications are discussed: air-coupled impact-echo scanning of concrete structures using seismically generated waves, and air-coupled imaging of internal damages in concrete using ultrasonic tomography. The first application aims to locate and characterize shallow delamination defects within concrete bridge decks. Impact-echo method is applied to scan defected concrete slabs using air coupled sensors. Next, efforts to apply air-coupled ultrasonic tomography to concrete damage imaging are discussed. Preliminary results are presented for air-coupled ultrasonic tomography applied to solid elements to locate internal defects. The results demonstrate that, with continued development, air-coupled ultrasonic tomography may provide improved evaluation of unseen material defects within structures.

The Impact of Severe Weather and Climate Change on Lean Supply Chains

  • Lee, DonHee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.3
    • /
    • pp.117-129
    • /
    • 2018
  • This study examines the impact of severe weather on lean supply chains. First, this paper reviewed the literature on the disruptions and damages that severe weather events cause on supply chain. Then, several recent examples of lean supply chain disruptions due to severe weather were discussed. The results of the study indicated that the frequency of weather related disasters is increasing and extreme weather events will increase potential risks to supply chains. First, building organizational resilience will help firms look beyond efficiency and profits in managing lean supply chains. Second, the concept of sole sourcing may need rethinking to maintain a supply chain that is lean and resilient. Third, organizations must plan ahead for supply chains in unpredictable weather. Fifth, communication is a key for anticipating and avoiding the impact of severe weather. This study proposes of a set of strategies, both theoretical and practical, that business firms should develop to effectively prevent and respond to severe weather related disruptions in lean supply chains.

Variation of Impact Values by Heat Treatment Temperature to Prevent Brittle Fracture of Roll Shell Steel (압연롤강의 취성파괴 방지를 위한 열처리 온도에 따른 충격치 변화에 관한 연구 (I))

  • Suh, Chang-Min;Suh, Min-Soo;Cho, Hae-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.33-39
    • /
    • 2011
  • This study involved a series of experiments, which included impact tests (drop weight & Charpy) and hardness tests under various heat treatment conditions, followed by fractography observations of Normal Roll Shell steel (NRS), Abnormal Roll Shell steel (ARS), and S25C steel, in order to analyze the cause of brittle fracture and damages in Roll Shell steel. The optimal tempering temperature was characterized for ARS and NRS.

A Survey on Cognition Levels of Consumers and Producers for Product Liability (제조물책임에 대한 소비자와 생산자의 인식수준에 관한 연구)

  • Kim Jin Tae;Jeon Young Rok
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.3
    • /
    • pp.109-120
    • /
    • 2005
  • A company is liable for its products and has the responsibility to make good on any loss or damage incurred by the user of its product. The purpose of the Product Liability Act(PLA) is to protect consumers against damage caused by defective products, and contribute to the safety of the citizen's life and the sound development of the national economy by regulating the liability of manufacturers, etc. for damages caused by the defectiveness of their products. In this study, the cognition levels of consumers and producers for PLA were surveyed. The cognition levels of four factors of acknowledgement, comprehension, necessity and impact for PLA were assessed. The results were as follows : i) Acknowledgement and comprehension levels of consumer were assessed low but they assessed necessity and impact of PLA high; ii) Producers assessed necessity and impact of PLA higher than their acknowledgement and comprehension levels; iii) Overall cognition levels of producers were higher than those of consumers.

Investigation of Ice Impacts on Aluminum Skin Structure (알루미늄 표피 구조의 Ice 충돌 특성에 관한 연구)

  • Park, Gyu Cheol;Myeong, No Sin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.110-116
    • /
    • 2003
  • With the growth of aircraft performance and needs for light aircraft, the problems associated with hail impacts on aircraft during flights and grounding become and important issue. These hail encounters can cause severe damages to aircraft and result in major concerns in safety and cost. Since nearly all external components of the commercial and military aircraft-in particular, the nose section and the leading edge of the wing and tail-are subject to damages, much effort has been put into understanding of this problem. However, most of the previous studies have focused on the composite components and few results have been reported for the metallic components. In this paper, we study the ice impacts on the aluminum component with the finite element analysis method utilizing commercial non-linear dynamics solver LS-DYNA. The results are compared with the experimental data and a simple measure of the ice impact effects is proposed.

Safety Evaluation of Net-type Debris Flow Protection System Using Numerical Analysis (수치해석을 이용한 네트형 토석류 방호시스템의 안전성 평가)

  • Lee, Eung-Beom;Lim, Hyun-Taek;Whang, Dae-Won;Lim, Chang-Su;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.157-168
    • /
    • 2018
  • Recently, the occurrence of typhoons and heavy rainfall is increasing due to climate change. This causes increase in possibility of landslide damages in rural areas. However, in reality, the precise engineering stability assessment studies are still insufficient. Therefore, in order to reduce the landslide damages and effectively manage mountainous areas, the development of disaster prevention techniques is needed. In this study, to analyze the shock absorbing effect of the buffer-spring during application of dynamic impact load in the debris flow protection system, numerical analysis is carried out for each free field of the buffer-spring and the load sharing ratio of the buffer-spring is also examined. In addition, the field applicability is verified by comparison of the tensile strength of the conventional buffer-spring and the wedge type buffer-spring on various magnitudes of dynamic impact load. As a result of the study, it is found that the net-type debris protection system is effective to mitigate loss of properties and human lifes during landslide.