• Title/Summary/Keyword: Impact damage characteristics

Search Result 291, Processing Time 0.033 seconds

Laminate composites behavior under quasi-static and high velocity perforation

  • Yeganeh, E. Mehrabani;Liaghat, G.H.;Pol, M.H.
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.777-796
    • /
    • 2016
  • In this paper, the behavior of woven E-glass fabric composite laminate was experimentally investigated under quasi-static indentation and high velocity impact by flat-ended, hemispherical, conical (cone angle of $37^{\circ}$ and $90^{\circ}$) and ogival (CRH of 1.5 and 2.5) cylindrical perforators. Moreover, the results are compared in order to explore the possibility of extending quasi-static indentation test results to high velocity impact test results in different characteristics such as perforation mechanisms, performance of perforators, energy absorption, friction force, etc. The effects of perforator nose shape, nose length and nose-shank connection shapes were investigated. The results showed that the quasi-static indentation test has a great ability to predict the high velocity impact behavior of the composite laminates especially in several characteristics such as perforation mechanisms, perforator performance. In both experiments, the highest performance occurs for 2.5 CRH projectile and the lowest is related to blunt projectiles. The results show that sharp perforators indicate lower values of dynamic enhancement factor and the flat-ended perforator represents the maximum dynamic enhancement factor among other perforators. Moreover, damage propagation far more occurred in high velocity impact tests then quasi-static tests. The highest damage area is mostly observed in ballistic limit of each projectile which projectile deviation strongly increases this area.

A Study on the Fracture Stress in Miniaturized Charpy Impact Specimens (소형 샤르피 충격시험편에서의 파괴응력에 관한 연구)

  • Nahm, Seung-Hoon;Kim, Am-Kee;Lee, Dae-Yeol;Kim, Si-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.132-137
    • /
    • 2001
  • Miniaturized specimen technology is useful to characterize the mechanical behavior using a minimum volume of material, because it is almost impossible to sample the conventional specimen for the fracture toughness test without damage to equipment. Test material was 1Cr-1Mo-0.25V steel which was widely used for turbine rotor material. Two kinds of miniaturized impact specimens were prepared, i.e., miniaturized specimen with side groove and without side groove. The correlation between ductile brittle transition temperature(DBTT) of full size impact specimen and that of miniaturized impact specimen was made. The characteristics of miniaturized impact specimens technique as well as fracture stress were discussed. Finally, we concluded that the characteristics of fracture stress change on aging time were similar to that of DBTT.

  • PDF

The Analysis and Classification of Urban Types for Potential Damage from Hazardous Chemical Accidents Using Factor and Cluster Analysis (요인 및 군집분석을 이용한 유해화학물질 사고 잠재적 피해에 대한 도시 유형 분류 및 특성 분석)

  • Lee, Seung Hoon;Ryu, Young Eun;Kim, Kyu Ri;Back, Jong In;Kim, Ho-Hyun;Ban, Yong Un
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.726-734
    • /
    • 2020
  • Objectives: The aim of this study was to analyze and classify the characteristics of potential damage from hazardous chemical accidents in 229 administrative units in South Korea by reflecting the social and environmental characteristics of areas where chemical accidents can occur. Methods: A number of indicators were selected through preceding studies. Factor analysis was performed on selected indicators to derive factors, and cluster analysis was performed based on the factor scores. Results: As a result of the cluster analysis, 229 administrative units were divided into three clusters, and it was confirmed that each cluster had its own characteristics. Conclusions: The first cluster, "areas at risk of accident occurrence and spread of damage" was a type with a high potential for accident damage and a high density of hazardous facilities. The second cluster, "Urban infrastructure damage hazard areas" appeared to be a cluster with high urban development characteristics. Finally, the third cluster 'Urban and environmental damage hazard areas' appeared to be a cluster with an excellent natural environment. This study went further from the qualitative discussion related to existing chemical accidents to identify and respond to accident damage by reflecting the social and environmental characteristics of the region. Distinct from the previous studies related to the causes of accidents and the response system, it is meaningful to conduct empirical research focusing on the affected areas by analyzing the possibility of accident damage in reflection of the social and environmental characteristics of the community.

Failure Analysis on the Carbon/Epoxy Laminate Subjected to Low Velocity Impact (저속충격을 받는 Carbon/Epox 적층판의 손상 해석)

  • 이호철;이영신;김재훈;전제춘
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.98-101
    • /
    • 2000
  • Recently, composite material which has much excellent mechanical characteristics has been applied in many industries. However, it has a brittle characteristic under impact condition and its invisible characteristics of the damaged area has been the motivation of many engineers investigation. The modified failure criterion is implemented to predict the failure behavior of the composite plate subjected to low velocity impact using commercial finite element analysis code, ABAQUS-Ver. 5.8. The new criterion is in good agreement with experimental results and can predict the failure behavior of the composite plate subjected to low velocity impact more accurately.

  • PDF

The Characteristics and Improvement Directions of Regional Climate Change Adaptation Policies in accordance with Damage Cases (지자체 기후변화 적응 대책 특성 및 개선 방향)

  • Ahn, Yoonjung;Kang, Youngeun;Park, Chang Sug;Kim, Ho Gul
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.4
    • /
    • pp.296-306
    • /
    • 2016
  • There is a growing interest in establishing a regional climate change adaptation policy as the climate change impact in the region and local scale increases. This study focused on the analysis of 32 regions on its characteristics of local climate change adaptation plans. First, statistic program R was used for conducting cluster analysis based on the frequency and budgets of adaptation plan. Further, we analyzed damage frequency from newspapers regarding climate change impacts in eight categories which were caused by extreme weather events on 2,565 cases for 24 years. Lastly, the characteristics of climate change adaptation plan was compared with damage frequency patterns for evaluating the adequacy of climate change adaptation plan on each cluster. Four different clusters were created by cluster analysis. Most clusters clearly have their own characteristics on certain sectors. There was a high frequency of damage in 'disaster' and 'health' sectors. Climate change adaptation plan and budget also invested a lot on those sectors. However, when comparing the relative rate among regional governments, there was a difference between types of damage and climate change adaptation plan. We assumed that the difference could come from that each region established their adaptation plans based on not only the frequency of damage, but vulnerability assessment, and expert opinions as well. The result of study could contribute to policy making of climate change adaptation plan.

Study on the Characteristics of Wavelet Decomposed Details of Low-Velocity Impact Induced AE Signals in Composite Laminaes (저속충격에 의해 발생한 복합적층판 음향방출신호의 웨이블릿 분해 특성에 관한 연구)

  • Bang, Hyung-Joon;Kim, Chun-Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.308-315
    • /
    • 2009
  • Because the attenuation of AE signal in composite materials is relatively higher than that of metallic materials, it is required to develop a damage assessment technique less affected by the attenuation property of composite materials in order to use AE sensing as a damage detection method. In the signal processing procedure, it is profitable to use the leading wave that arrives first because the leading wave is less influenced by the boundary conditions. Using wavelet transform, we investigated the frequency characteristics of impact induced AE signals focused on the leading wave in advance and chose the key factors to discriminate the damaged condition quantitatively. In this research, we established a damage assessment technique using the sharing percentage of the wavelet detail components of AE signal, and conducted a low-velocity impact test on composite laminates to confirm the feasibility of the proposed signal processing method.

A study on the fatigue bending strength of quasi-isotropic CFRP laminates subjected to impact damage (축격손상을 받은 의사등방성 탄소섬유강화 복합재의 굽힘피로강도)

  • Park, Soo-Chul;Park, Seol-Hyeon;Jung, Jong-An;Cha, Cheon-Seok;Yang, Yong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.688-695
    • /
    • 2017
  • Compared to metal, CFRP has excellent mechanical characteristics in terms of intensity, hardness, and heat resistance as well as its light weight that it is used widely in various fields. Therefore, this material has been used recently in the aerospace field. On the other hand, the material has shortcomings in terms of its extreme vulnerability to damage occurring internally from an external impact. This study examined the intensity up to its destruction from repeated use with the internal impact of a CFRP laminated plate that had also been exposed to external impact obtain design data for the external plate of aircraft used in the aerospace field. For the experimental method, regarding the quasi-isotopic type CFRP specimen and orthotropic CFRP specimen that are produced with a different layer structure, steel spheres with a diameter of 5 mm were collided to observe the resulting impact damage. Through a 3-point flexural fatigue experiment, the progress of internal layer separation and impact damage was observed. Measurements of the flexural fatigue strength after the flexural fatigue experiment until internal damage occurs and the surface impacted by the steel spheres revealed the quasi-isotopic layer structure to have a higher intensity for both cases.

Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment (해수 환경에서 듀플렉스 스테인리스강의 전기화학적 거동 및 캐비테이션 특성)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.466-474
    • /
    • 2021
  • A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.

DYNAMIC CHARACTERISTICS OF SCALED-DOWN W-BEAMS UNDER IMPACT

  • Hui, T.-Y.-J.;Ruan, H.-H.;Yu, T.-X.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • W-beam guardrail system has been the most popular roadside safety device around the world. Through large plastic deformation and corresponding energy dissipation, a W-beam guardrail system contains and re-directs out-of-control vehicles so as to reduce the impact damage on the vehicle occupants and the vehicles themselves. In this paper, our recent experiments on 1 : 3.75 downscaled W-beam and the beam-post system are reported. The static and impact test results on the load characteristics, the global response and the local cross-sectional distortion are reveled. The effects of three different end-boundary conditions for the beam-only testing are examined. It is found that the load characteristics are much dependent on the combined contribution of the local cross-sectional distortion and the end-supporting conditions. The energy Partitioning between the beam and the supporting Posts in the beam-Post-system testing were also examined. The results showed that the energy dissipation partitioning changed with the input impact energy. Finally, a simple mass-spring model is developed to assess the dynamic response of a W-beam guardrail system in response to an impact loading. The model's prediction agrees well with the experimental results.

The Accident and Injury Characteristics of Elderly Drivers on Lateral Impact (고령 운전자 측면충돌 사고 및 상해특성)

  • Hong, Seung-Jun;Park, Won-Pil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.104-113
    • /
    • 2010
  • Domestic insurance claims were statistically investigated to analyze the elderly driver's accident patterns and injury types in side impact crashes. Medical treatment records and accident vehicle damage photos have been surveyed for 5,419 cases. The results of our statistical analysis showed that the thorax injury risk of the elderly drive group is 8.8 and 4.0 times higher than that of the young and middle age group respectively. Diagnosis showed that most thorax injuries were caused by rib fracture. The head injury risk of the elderly female driver group seemed to be higher than that of the younger female driver group, however, statistical test has not been conducted because of the lack of number of samples for elderly female accident.