• Title/Summary/Keyword: Impact Technique

Search Result 1,484, Processing Time 0.032 seconds

Application of the Principal Component Analysis to Evaluate Concrete Condition Using Impact Resonance Test (충격공진을 이용한 콘크리트 상태 평가를 위한 주성분 분석의 적용)

  • Yoon, Young Geun;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.95-102
    • /
    • 2019
  • Non-destructive methods such as rebound hardness method and ultrasonic method are widely studied for evaluating the physical properties, condition and damage of concrete, but are not suitable for detecting delamination and cracks near the surface due to various constraints of the site as well as the accuracy. Therefore, in this study, the impact resonance method was applied to detect the separation cracks occurring near the surface of the concrete slab and bridge deck. As a next step, the principal component analysis were performed by extracting various features using the FFT data. As a result of principal component analysis, it was analyzed that the reliability was high in distinguishing defects in concrete. This feature extraction and application of principal component analysis can be used as basic data for future use of machine learning technique for the better accuracy.

Application of Vertical Grid-nesting to the Tropical Cyclone Track and Intensity Forecast

  • Kim, Hyeon-Ju;Cheong, Hyeong-Bin;Lee, Chung-Hui
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.382-391
    • /
    • 2019
  • The impact of vertical grid-nesting on the tropical cyclone intensity and track forecast was investigated using the Weather Research and Forecast (WRF) version 3.8 and the initialization method of the Structure Adjustable Balanced Bogus Vortex (SABV). For a better resolution in the central part of the numerical domain, where the tropical cyclone of interest is located, a horizontal and vertical nesting technique was employed. Simulations of the tropical cyclone Sanba (16th in 2012) indicated that the vertical nesting had a weak impact on the cyclone intensity and little impact on the track forecast. Further experiments revealed that the performance of forecast was quite sensitive to the horizontal resolution, which is in agreement with previous studies. The improvement is due to the fact that horizontal resolution can improve forecasts not only on the tropical cyclone-scale but also for large-scale disturbances.

Feature Impact Evaluation Based Pattern Classification System

  • Rhee, Hyun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.25-30
    • /
    • 2018
  • Pattern classification system is often an important component of intelligent systems. In this paper, we present a pattern classification system consisted of the feature selection module, knowledge base construction module and decision module. We introduce a feature impact evaluation selection method based on fuzzy cluster analysis considering computational approach and generalization capability of given data characteristics. A fuzzy neural network, OFUN-NET based on unsupervised learning data mining technique produces knowledge base for representative clusters. 240 blemish pattern images are prepared and applied to the proposed system. Experimental results show the feasibility of the proposed classification system as an automating defect inspection tool.

WALANT: A Discussion of Indications, Impact, and Educational Requirements

  • Shahid, Shahab;Saghir, Noman;Saghir, Reyan;Young-Sing, Quillan;Miranda, Benjamin H.
    • Archives of Plastic Surgery
    • /
    • v.49 no.4
    • /
    • pp.531-537
    • /
    • 2022
  • Wide-awake, local anesthesia, no tourniquet (WALANT) is a technique that removes the requirement for operations to be performed with a tourniquet, general/regional anesthesia, sedation or an anesthetist. We reviewed the WALANT literature with respect to the diverse indications and impact of WALANT to discuss the importance of future surgical curriculum integration. With appropriate patient selection, WALANT may be used effectively in upper and lower limb surgery; it is also a useful option for patients who are unsuitable for general/regional anesthesia. There is a growing body of evidence supporting the use of WALANT in more complex operations in both upper and lower limb surgery. WALANT is a safe, effective, and simple technique associated with equivalent or superior patient pain scores among other numerous clinical and cost benefits. Cost benefits derive from reduced requirements for theater/anesthetic personnel, space, equipment, time, and inpatient stay. The lack of a requirement for general anesthesia reduces aerosol generating procedures, for example, intubation/high-flow oxygen, hence patients and staff also benefit from the reduced potential for infection transmission. WALANT provides a relatively, but not entirely, bloodless surgical field. Training requirements include the surgical indications, volume calculations, infiltration technique, appropriate perioperative patient/team member communication, and specifics of each operation that need to be considered, for example, checking of active tendon glide versus venting of flexor tendon pulleys. WALANT offers significant clinical, economic, and operative safety advantages when compared with general/regional anesthesia. Key challenges include careful patient selection and the comprehensive training of future surgeons to perform the technique safely.

A Study on the Determination of the Optimal Parameter for the Evaluation of the Effective Prestress Force on the Bonded Tendon (부착식 텐던의 유효 긴장력 평가를 위한 최적의 매개변수 결정에 관한 연구)

  • Jang, Jung Bum;Lee, Hong Pyo;Hwang, Kyeong Min;Song, Young Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.161-168
    • /
    • 2010
  • The bonded tendon was adopted to the reactor building of some operating nuclear power plants in Korea and the assessment of the effective prestress force on the bonded tendon is being issued as an important pending problem for continuous operation beyond their design life. The sensitivity analysis of various parameters was carried out to evaluate the effective prestress force using the system identification technique and the optimal parameters were determined for SI technique in this study. The 1/5 scaled post-tensioned concrete beams with the bonded tendon type were manufactured and in order to investigate the relationship of the natural frequency and the displacement to the effective prestress force, impact test, SIMO sine sweep test and bending test using the optical fiber sensor and the compact displacement transducer were carried out. As a result of tests, both the natural frequency and the displacement show the good relationship with the effective prestress force and both parameters are available for the SI technique to estimate the effective prestress force.

Vulnerability AssessmentunderClimateChange and National Water Management Strategy

  • Koontanakulvong, Sucharit;Suthinon, Pongsak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.204-204
    • /
    • 2016
  • Thailand had set the National Water Management Strategy which covered main six areas in the next 12 years, i.e., by priority: (1) water for household, (2) water for agricultural and industrial production, (3) water for flood and drought management, (4) water for quality issue, (5) water from forest conservation and soil erosion protection, (6) water resources management. However due to the climate change impact, there is a question for all strategies is whether to complete this mission under future climate change. If the impact affects our target, we have to clarify how to mitigate or to adapt with it. Vulnerability assessment was conducted under the framework of ADB's (with the parameters of exposure, sensitivity and adaptive capacity) and the assessments were classified into groups due to their different characteristic and the framework of the National Water Management Strategy, i.e., water supply (rural and urban), water for development (agriculture and others), water disasters (floods (flash, overflow), drought, water quality). The assessments identified the parameters concerned and weight factors used for each groups via expert group discussions and by using GIS mapping technology, the vulnerability maps were produced. The maps were verified with present water situation data (floods, drought, water quality). From the analysis result of this water resources management strategy, we found that 30% of all projects face the big impacts, 40% with low impact, and 30% for no impact. It is clear that water-related agencies have to carefully take care approximately 70% of future projects to meet water resources management strategy. It is recommended that additional issues should be addressed to mitigate the impact from climate risk on water resource management of the country, i.e., water resources management under new risk based on development scenarios, relationship with area-based problems, priority definition by viewpoints of risk, vulnerability (impact and occurrence probability in past and future), water management system in emergency case and water reserve system, use of information, knowledge and technology in management, network cooperation and exchange of experiences, knowledge, technique for sustainable development with mitigation and adaptation, education and communication systems in risk, new impact, and emergency-reserve system. These issues will be described and discussed.

  • PDF

Acquisition of Parameters for Impact Damage Analysis of Sheet Molding Compound Based on Artificial Neural Network (인공신경망 기반 SMC 복합재료의 충돌 손상 해석을 위한 파라메터 획득)

  • Lee, Sang-Cheol;Kim, Jeong
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.115-122
    • /
    • 2021
  • SMC(Sheet molding compound) composite is mainly used for forming of vehicle's body. Considering the car accident, it is essential to research the impact behavior and characteristics of materials. It is difficult to identify them because the impact process is completed in a short time. Therefore, the impact damage analysis using FE(finite element) model is required for the impact behavior. The impact damage analysis requires the parameters for the damage model of SMC composite. In this paper, ANN(artificial neural network) technique is applied to obtain the parameters for the damage model of SMC composite. The surrogate model by ANN was constructed with the result in LS-DYNA. By comparing the absorption energy in drop weight test with the result of ANN model, the optimized parameters were obtained. The acquired parameters were validated by comparing the results of the experiment, the FE model and the ANN model.

FRF Distortion Caused by Exponential Window Function on Impact Hammer Testing and Its Solution (지수창함수를 사용한 임팩트햄머 실험에서 주파수응답함수의 왜곡과 개선책)

  • 안세진;정의봉
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.334-340
    • /
    • 2003
  • Exponential window function Is widely used In impact hammer testing to reduce leakage error as well as to get a good S/N ratio. The larger its decaying rate is, the more effectively the leakage errors are reduced. But if the decay rate of the exponential window is too large, the FRF is distorted. And the modal parameters of the system can not be exactly identified by modal analysis technique. Therefore, it is a difficult problem to determine proper decay rate in impact hammer testing. In this paper, amount of the FRF distortion caused by exponential window is theoretically uncovered. A new circle fitting method is also proposed so that the modal parameters are directly extracted from impulse response spectrum distorted by the exponential-windowed impulse response data. The results by the conventional and proposed circle fitting method are compared through a numerical example.

An Empirical Investigation of the Impact of Customer Learning on Customer Experience in the Context of Knowledge Product Use

  • KIM, Yong Jin;YIM, Myung-Seong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.969-976
    • /
    • 2020
  • The role of customers has changed from that of passive users to value co-creators. Therefore, it is important to understand how customer learning takes place and how it affects customer experiences with services and products. However, while past studies insist on the importance of the issues in designing customer experiences, they do not empirically address these issues. This study investigates the support processes for customer learning, and their impact on customer learning, which in turn influences customer experience. To test the hypotheses, we employed the survey method. Target informants were the actual users of Apple iPods. A total of 200 survey questionnaires were distributed and 146 were collected. Among these, seven erroneous responses were excluded, leaving 139 usable ones. The proposed model was empirically analyzed using the Covariance-based SEM (Structural Equation Modelling) technique. The findings of this study suggest that, among the three support processes in customer learning, learning-by-doing support and learning-by-investment support positively affect customer learning, which influences customer experience. This study contributes to the literature by identifying different types of support for different kinds of customer learning processes and by empirically testing the impact of the support for the process on customer learning, and in turn, its impact on customer experience.

Estimation of Thickness of Concrete Structures using the Impact Echo Method and Ultrasonic Pulse Velocity Method

  • Hong, Seonguk;Lee, Yongtaeg;Kim, Seunghun;Lee, Changsik
    • Architectural research
    • /
    • v.18 no.4
    • /
    • pp.179-184
    • /
    • 2016
  • The structure must be periodically checked and measures must be taken to prevent deterioration in building construction. From this point of view, a nondestructive test is essential to estimate whether the construction of buildings is proper, and whether the dimension of depositing concrete is consistent and without damage. This study estimated the thickness of the concrete component of construction framework using the ultrasonic velocity method and the impact echo method, in order to investigate reliability of the estimation of the thickness of normal strength concrete and high strength concrete, leading to the following conclusions. In the estimation of the thickness of the concrete structures, specimens of normal strength of 24MPa and specimens of high strength of 40MPa demonstrated an average error rate of 5.1% and 2.2%, respectively. The impact-echo method, one of the non-destructive tests, is verified as an efficient diagnostic technique. With this information, we will determine specific standards for the maintenance of structures, and the re-creation of lost building blueprints.