• Title/Summary/Keyword: Impact Properties

Search Result 2,560, Processing Time 0.034 seconds

Influence of Oxyfluorination on Physicochemical Characteristics of Carbon Fibers and their Reinforced Epoxy Composites

  • Seo, Min-Kang;Park, Soo-Jin
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.430-435
    • /
    • 2009
  • The effect of oxyfluorination temperature on the surface properties of carbon fibers and their reinforced epoxy composites was investigated. Infrared (IR) spectroscopy results for the oxyfluorinated carbon fibers revealed carboxyl/ester (C=O) and hydroxyl (O-H) groups at 1632 and 3450 $cm^{-1}$, respectively, and that the oxyfluorinated carbon fibers had a higher O-H peak intensity than that of the fluorinated ones. X-ray photoelectron spectroscopy (XPS) results indicated that after oxyfluorination, graphitic carbon was the major carbon functional component on the carbon fiber surfaces, while other functional groups present were C-O, C=O, HO-C=O, and $C-F_x$. These components improved the impact properties of oxyfluorinated carbon fibers-reinforced epoxy composites by improving the interfacial adhesion between the carbon fibers and the epoxy matrix resins.

Effects of the Pre-strain on Mechanical Properties of the Solid-Phase Formed Thermoplastic Composite (고상성형된 열가소성 복합재료의 성형 변형률이 기계적 특성에 미치는 영향)

  • Lee, Jung-Hui;Jo, Hyeon-Cheol;Lee, Gyeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1220-1226
    • /
    • 2001
  • This study investigates the effects of the pre-strain level on mechanical properties of the solid-phase formed thermoplastic composite. A uniaxial solid-phase forming was performed at the temperature of 125$\^{C}$ and at the constant cross-head speed of 3mm/sec. The composite sheet was formed to various pre-strain levels of 10%, 20%, and 30%. Tension, flexural, and impact tests were carried out to characterize the material properties of a solid-phase formed part. Tensile and flexural strengths decreased with increasing the pre-strain level, while impact strength increased. Various microstructures of the formed part explained the above material behavior.

SUSSING MERGER TREES: THE IMPACT OF HALO MERGER TREES ON GALAXY PROPERTIES IN A SEMI-ANALYTIC MODEL

  • LEE, JAEHYUN;YI, SUKYOUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.473-474
    • /
    • 2015
  • Halo merger trees are the essential backbone of semi-analytic models for galaxy formation and evolution. Srisawat et al. (2013) show that different tree building algorithms can build different halo merger histories from a numerical simulation for structure formation. In order to understand the differences induced by various tree building algorithms, we investigate the impact of halo merger trees on a semi-analytic model. We find that galaxy properties in our models show differences between trees when using a common parameter set. The models independently calibrated for each tree can reduce the discrepancies between global galaxy properties at z=0. Conversely, with regard to the evolutionary features of galaxies, the calibration slightly increases the differences between trees. Therefore, halo merger trees extracted from a common numerical simulation using different, but reliable, algorithms can result in different galaxy properties in the semi-analytic model. Considering the uncertainties in baryonic physics governing galaxy formation and evolution, however, these differences may not necessarily be significant.

Development of Vehicle Door Impact Beam by Hot Stamping (핫스탬핑에 의한 자동차 도어 임팩트빔의 개발)

  • Yum, Young-Jin;Kim, Jong-Gook;Lee, Hyun-Woo;Hwang, Jung-Bok;Kim, Sun-Ung;Kim, Won-Hyuck;Yoo, Seung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.7-12
    • /
    • 2008
  • A hot stamping technology of vehicle door impact beam made of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technology has been implemented to increase the strength of vehicle body parts and to reduce not only the weight of door impact beam but also the number of work processes. Mechanical tests were performed to obtain material properties of hot-stamped specimen and those were used as input data in stamping and structural simulation for optimal design of door impact beam. Strength of hot-stamped door impact beam increased to the value 102% higher than that of conventional pipe-shaped door impact beam and structural simulation showed that hot-stamped door impact beam achieved 28% weight reduction.

  • PDF

An Improvement for Impact Factor Determination to Traffic Loads (통행차량에 의한 충격계수 산정방법 개선)

  • Koo, Bong-Kuen;Ryu, Taek-Eun;Lee, Jae-Bum;Ryu, Youn-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.217-224
    • /
    • 2002
  • This paper is proposed a reasonable method for determining the dynamic properties, the impact factors caused by traffic loads on highway bridges. In addition, the impact factors obtained in previous inspection reports were classified by the span length of the bridge, kind of bridge and type of bridge and the result of the impact factor was adjusted by a statistical method and presented problems. Also, the method for determining the impact factor using traffic load is proposed and the proposed method is compared with the specification code. The method estimating the impact factors due to the traffic loads can efficiently recognize the response of the structure by providing the impact factors and help to save the investigation cost, and also it can be used for the maintenance of structures using the usual test of bridges.

Antibacterial Activity and Mechanical Properties of Poly(Lactic-Acid) Composites Containing Zeolite-type Inorganic Bacteriocide

  • Park, Yuri;Park, Tae-Hee;Lee, Rami;Baek, Jong-sung;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.201-210
    • /
    • 2017
  • We studied the antibacterial effect and mechanical properties of PLA composites with in organic porous zeolite-type bacteriocides. The specimens were prepared by an intermeshing co-rotating twin screw extruder using different contents of inorganic bacteriocide. The degree of dispersion of the in organic bacteriocide in the PLA composite was confirmed by FE-SEM. The contents of Ag and Zn in the composite were also investigated by energy dispersive spectroscopy at different concentrations of the inorganic bacteriocide. The antibacterial effects were analyzed by turbidity analysis, shaking culture, and drop-test. The mechanical properties, such as the tensile and flexural properties, impact strength, and physical properties, were also investigated. As the content of inorganic bacteriocide increased, the antibacterial activity was increased, especially against Staphylococcus aureus. Mechanical properties, namely, tensile strength, elongation, flexural strength, and impact strength, tended to decrease with an increase in inorganic bacteriocide content, but the tensile and flexural modulus increased.

Development and mechanical properties of bagasse fiber reinforced composites

  • Cao, Yong;Goda, Koichi;Shibata, Shinichi
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.283-298
    • /
    • 2007
  • Environment-friendly composites reinforced with bagasse fiber (BF), a kind of natural fiber as the remains from squeezed sugarcane, were fabricated by injection molding and press molding. As appropriate matrices for injection molding and press molding, polypropylene (PP) and polycaprolactone-cornstarch (PCL-C) were selected, as a typical recyclable resin and biodegradable resin, respectively. The mechanical properties of BF/PP composites were investigated in view of fiber mass fraction and injection molding conditions. And the mechanical properties and the biodegradation of BF/PCL composites were also evaluated. In the case of injection molding, the flexural modulus increased with an increase in fiber mass fraction, and the mechanical properties decreased with an increase in cylinder temperature due to the thermal degradation of BF. The optimum conditions increasing the flexural properties and the impact strength were $90^{\circ}C$ mold temperature, 30 s injection interval, and in the range of 165 to $185^{\circ}C$ cylinder temperature. On the other hand, as to BF/PCL-C fully-green composites, both the flexural properties and the impact strength increased with an increase in fiber mass fraction. It is considered that the BF compressed during preparation could result in the enhancement in mechanical properties. The results of the biodegradability test showed the addition of BF caused the acceleration of weight loss, which increased further with increasing fiber content. This reveals that the addition and the quantities of BF could promote the biodegradation of fully-green composites.

Thermal and Mechanical Properties of Ceramic Coated Al Bus Bar (세라믹 코팅 Al 부스바의 열적·기계적 특성)

  • Kwag, Dong-Soon;Baek, Seung-Myeong;Kwak, Min Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1651-1656
    • /
    • 2017
  • This paper deals with the thermal and mechanical properties of ceramic coating material for bus bars. A ceramic coated samples were prepared for the mechanical properties test. There are two types of samples. One is a square shape and the other is a busbar shape. Each sample was deteriorated for 30 days to compare the thermal and mechanical properties with the non-degraded samples. Two thermal properties tests are TGA and flammability tests, and four mechanical properties tests are drop impact test, cross cut, tensile test, and bend test. The ceramic coating material was never damaged by impact and did not separate from aluminum in the cross cut test. In the tensile test, the breakage of the insulating material did not occur until aluminum fractured, and the breakage of the insulating material did not occur until the maximum load in the bending test. The decomposition temperature (melting point) of the ceramic coating material was higher than that of other epoxy insulators. This ceramic coating material is nonflammable and it has excellent fire stability.

Impact Resistance Properties of High Strength Fiber-Reinforced Composites According to Types and Amounts of Fibers (섬유 종류 및 혼입량에 따른 고강도 섬유보강 복합재료의 충돌 저항 성능)

  • Choi, Jeong-Il;Park, Se-Eon;Kim, Gyu-Yong;Lee, Sang-Kyu;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.349-355
    • /
    • 2020
  • The purpose of this study is to investigate the effects of types and amounts of fibers on the compressive strength and tensile behavior high strength fiber-reinforced composites under a static load and impact resistance properties of composites under a high-velocity projectile impact load. Three kinds of mixtures were designed and specimens were manufactured. compressive strength, uniaxial tension, and high velocity projectile impact load tests were performed. Test results showed that the amount of fiber has a greater effect on the tensile strength an d tensile strain capacity than the compressive strength, an d the tensile strain capacity was improved by using hybrid fibers. It was also found that the amount of steel fiber had a great influence on the impact resistance capacity of panels. Although the impact resistance capacity of panels could be improved by using hybrid fibers, the difference of impact resistance capacity between specimens was found to be larger than the case of use of single fiber.