• Title/Summary/Keyword: Impact Monitoring

Search Result 1,097, Processing Time 0.028 seconds

Performance Improvement Analysis of Building Extraction Deep Learning Model Based on UNet Using Transfer Learning at Different Learning Rates (전이학습을 이용한 UNet 기반 건물 추출 딥러닝 모델의 학습률에 따른 성능 향상 분석)

  • Chul-Soo Ye;Young-Man Ahn;Tae-Woong Baek;Kyung-Tae Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1111-1123
    • /
    • 2023
  • In recent times, semantic image segmentation methods using deep learning models have been widely used for monitoring changes in surface attributes using remote sensing imagery. To enhance the performance of various UNet-based deep learning models, including the prominent UNet model, it is imperative to have a sufficiently large training dataset. However, enlarging the training dataset not only escalates the hardware requirements for processing but also significantly increases the time required for training. To address these issues, transfer learning is used as an effective approach, enabling performance improvement of models even in the absence of massive training datasets. In this paper we present three transfer learning models, UNet-ResNet50, UNet-VGG19, and CBAM-DRUNet-VGG19, which are combined with the representative pretrained models of VGG19 model and ResNet50 model. We applied these models to building extraction tasks and analyzed the accuracy improvements resulting from the application of transfer learning. Considering the substantial impact of learning rate on the performance of deep learning models, we also analyzed performance variations of each model based on different learning rate settings. We employed three datasets, namely Kompsat-3A dataset, WHU dataset, and INRIA dataset for evaluating the performance of building extraction results. The average accuracy improvements for the three dataset types, in comparison to the UNet model, were 5.1% for the UNet-ResNet50 model, while both UNet-VGG19 and CBAM-DRUNet-VGG19 models achieved a 7.2% improvement.

Environmental Factors on the Use of Wildlife Bridge by Striped Field Mouse (Apodemus agraius) (등줄쥐의 육교형 생태통로 이용에 미치는 환경 특성)

  • Gi-Yeong Jeong;Ji-Hoon Lee;Yong-Won Mo
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.5
    • /
    • pp.337-346
    • /
    • 2023
  • Although wildlife bridge are built as a way to reduce habitat fragmentation caused by road construction, there is still a lot of debate about their effectiveness. Monitoring methods such as footprint traps and camera traps are used evaluate the effectiveness of wildlife bridge, but there is a limit to evaluate of effectiveness. In this study, the degree of use the wildlfe bridge was surveyed by striped field mouse that is likely use the wildlife bridge and surrounding as a habitat with capture-mark-recapture method.(Apodemus agraius). The distance and route of movement were identified by connecting the capture points, and the environmental factors on the use of the wildlife bridge implemented a generalized linear model(GLM) with the capture number of captured as a dependent variable. Consequently of capture, no individuals crossing the wildlife bridge, striped field mouse use the wildlife bridge as a habitat.The environmental factors affecting the use of mice were vegetation cover(1~2m, 2~8m, over 8m), vegetation construction, maximum diameter at breast height were positively correlated and slope was nagatively correlated. In conclusion, it is expected that the effectiveness of the wildlife bridge will be further improved by planting shrubs and trees and preventing high slope and cut slope increasing the utilization of the rat, such as being used as a food source in the ecosystem.

Discussion on the Classification of Floristic Target Species - An Ecological Paradox of Floristic Regions - (식물구계학적 특정종 분류에 관한 고찰 - 식물구계의 역리 -)

  • Jong-Won Kim;Byeongcheol Eom;Jeong-Seok Park;Yun-Ha Kim;Byoung-Ki Choi
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.5
    • /
    • pp.318-326
    • /
    • 2023
  • The floristic target species (FTS) has been widely used as a important tool for environmental assessment in Korea. Here the floristic district is a key criterion for the selection and evaluation of FTS. The aim of this study is to clarify the intellectual meaning of the floristic district i.e. a sort of phytogeographical subunit. We reviewed 7 main literatures related to the floristic district. Nakai's 1919 Ulleungdo flora survey report was first to mention a region and/or province in terms of general geographical divisions. In 1977, the floristic district map of the Korea vascular plants was first described by Oh. In 1978, Lee & Yim proposed a new floristic district map dividing the central and southern regions, and the district boundaries have been adjusted by many other researchers. In the end, the floristic district map modified slightly from Lee & Yim's map was nationally recognized in 2018. However, the boundaries of floristic districts were inconsistent, both in their setting and adjustment, as well as the indicator species of the district. No basis for this inconsistency could be confirmed. We concluded that all district maps depend on arbitrary lines drawn a priori, and finally proposed the following two ecological strategies to ensure the effectiveness and practicality of the FTS as a scientific means for environmental impact assessment and national flora evaluation: (i) designing to achieve the flora list and the floristic district based on nativeness of plant distribution, (ii) constructing a habitat-based floral monitoring system.

Submarine Discharge of Fresh Groundwater Through the Coastal Area of Korea Peninsula: Importance as a Future Water Resource (한반도 주변 연안 해저를 통한 담지하수의 유출: 미래 수자원으로서의 중요성)

  • Hwang, Dong-Woon;Kim, Gue-Buem;Lee, Jae-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.4
    • /
    • pp.192-202
    • /
    • 2010
  • Submarine groundwater discharge (SGD) has been recognized as a provider for freshwater, nutrients, and dissolved constituents from continents to the oceans and paid more attention with regard to the mass balance of water or dissolved constituents on local and global scales. The submarine discharge of fresh groundwater (fresh SGD) through seepage or springs in coastal ocean may be especially important in aspects of water resource and marine environment managements in the future. Based on the worldwide compilations of observed fresh SGD, our review reveals that fresh SGD occurs in various marine environments along most shoreline of the world and the global estimates of fresh SGD were approximately 0.01-17% of surface runoff. In addition, the input of fresh SGD calculated and investigated in this study were about 50%, 57%, 89%, and 420% of total river discharge in Jeju Island, Yeongil Bay, Masan Bay, and Yeoja Bay, respectively. These inputs from fresh SGD along the shoreline of Korea Peninsula are much higher than those of the whole world, greatly vary with the region. However, since these estimates are based on the water balance method mainly used in coastal ocean, we have to perform continuous monitoring of various parameters, such as precipitation, tide, evapotanspiration and water residence time, which have an impact on the water balance in a lot of areas for evaluating the precise input of fresh SGD. In addition, since the method estimating the input of fresh SGD has brought up many problems, it is required to make an intercomparison between various methods such as hydrogeological assumption, numerical modeling, and seepage meter.

Characteristic Analysis of Wireless Channels to Construct Wireless Network Environment in Underground Utility Tunnels (지하공동구 내 무선 네트워크 환경구축을 위한 무선채널 특성 분석)

  • Byung-Jin Lee;Woo-Sug Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.27-34
    • /
    • 2024
  • The direct and indirect damages caused by fires in underground utility tunnels have a great impact on society as a whole, so efforts are needed to prevent and manage them in advance. To this end, research is ongoing to prevent disasters such as fire flooding by applying digital twin technology to underground utility tunnels. A network is required to transmit the sensed signals from each sensor to the platform. In essence, it is necessary to analyze the application of wireless networks in the underground utility tunnel environments because the tunnel lacks the reception range of external wireless communication systems. Within the underground utility tunnels, electromagnetic interference caused by transmission and distribution cables, and diffuse reflection of signals from internal structures, obstacles, and metallic pipes such as water pipes can cause distortion or size reduction of wireless signals. To ensure real-time connectivity for remote surveillance and monitoring tasks through sensing, it is necessary to measure and analyze the wireless coverage in underground utility tunnels. Therefore, in order to build a wireless network environment in the underground utility tunnels. this study minimized the shaded area and measured the actual cavity environment so that there is no problem in connecting to the wireless environment inside the underground utility tunnels. We analyzed the data transmission rate, signal strength, and signal-to-noise ratio for each section of the terrain of the underground utility tunnels. The obtained results provide an appropriate wireless planning approach for installing wireless networks in underground utility tunnels.

Effects of Environmental Conditions on Vegetation Indices from Multispectral Images: A Review

  • Md Asrakul Haque;Md Nasim Reza;Mohammod Ali;Md Rejaul Karim;Shahriar Ahmed;Kyung-Do Lee;Young Ho Khang;Sun-Ok Chung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.319-341
    • /
    • 2024
  • The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and crop status assessments. This paper reviewed the complex interactions between environmental conditions and multispectral sensors emphasizing the importance of accounting for these factors to enhance the reliability of reflectance data in agricultural applications.An overview of the fundamentals of multispectral sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40-70%, affecting reflectance in the red (-0.01 to 0.02) and near-infrared (NIR) bands (-0.03 to 0.06), crucial for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and agricultural assessments. During the COVID-19 lockdown,reduced atmospheric interference improved the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged as the most stable indices, providing consistent measurements across different lighting conditions. Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10-20% with changes in aerosol optical thickness, 15-30% with water vapor levels, and up to 25% in NIR reflectance due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change, highlighting the complexity of environmental impacts on remote sensing data. This review indicated the importance of precisely managing environmental factors to maintain the integrity of VIs calculations. Explaining the relationship between environmental variables and multispectral sensors offers valuable insights for optimizing the accuracy and reliability of remote sensing data in various agricultural applications.

Multivariate statistical study on naturally occurring radioactive materials and radiation hazards in lakes around a Chinese petroleum industrial area

  • Yan Shi;Junfeng Zhao;Baiyao Ding;Yue Zhang;Zhigang Li;Mohsen M.M.Ali;Tuya Siqin;Hongtao Zhao;Yongjun Liu;Weiguo Jiang;Peng Wu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2182-2189
    • /
    • 2024
  • The high-purity germanium gamma-ray spectrometer was used to measure the radioisotope in surface water of lakes in a Chinee petroleum industrial area. 92 samples were collected from surface water of three lakes. Activity concentrations of 232Th, 226Ra and 40K in three lakes were measured, distributed in the range of 101.8-209.4, 192.1-224.9 and 335.0-548.9 mBq/L, respectively. Results were all within the limits of WHO and China. Potential environmental and health risks were assessed by calculating some radiation hazard indicators, radium equivalent index, annual effective dose, excess lifetime cancer risk, absorbed dose rate, external hazard index, internal hazard index, annual gonadal dose equivalent, activity utilization index and representative gamma index, which ranged 0.38-0.54 Bq/L, 0.06-0.08 mSv/y, 0.23 × 10-3-0.31 × 10-3, 0.17-0.24 nGy/h, 1.01 × 10-3-1.46 × 10-3, 1.55 × 10-3-2.02 × 10-3, 1.16-1.66 μSv/y, 3.13 × 10-3-4.45 × 10-3 and 2.60 × 10-3-3.77 × 10-3. The results were all at acceptable levels, meaning no impact on human health. The relationship between the electrical conductivity of surface water and the activity concentration of 232Th, 226Ra and 40K was evaluated. The electrical conductivity value was 0.241-0.369 mS/cm, showing a significant correlation coefficient between 226Ra and 40K and electrical conductivity. Multivariate statistical methods were used to determine the relationship between the activity concentrations of 232Th, 226Ra, and 40K, radiation hazard indicators and electrical conductivity.

Smoking-attributable Mortality in Korea, 2020: A Meta-analysis of 4 Databases

  • Eunsil Cheon;Yeun Soo Yang;Suyoung Jo;Jieun Hwang;Keum Ji Jung;Sunmi Lee;Seong Yong Park;Kyoungin Na;Soyeon Kim;Sun Ha Jee;Sung-il Cho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.57 no.4
    • /
    • pp.327-338
    • /
    • 2024
  • Objectives: Estimating the number of deaths caused by smoking is crucial for developing and evaluating tobacco control and smoking cessation policies. This study aimed to determine smoking-attributable mortality (SAM) in Korea in 2020. Methods: Four large-scale cohorts from Korea were analyzed. A Cox proportional-hazards model was used to determine the hazard ratios (HRs) of smoking-related death. By conducting a meta-analysis of these HRs, the pooled HRs of smoking-related death for 41 diseases were estimated. Population-attributable fractions (PAFs) were calculated based on the smoking prevalence for 1995 in conjunction with the pooled HRs. Subsequently, SAM was derived using the PAF and the number of deaths recorded for each disease in 2020. Results: The pooled HR for all-cause mortality attributable to smoking was 1.73 for current men smokers (95% confidence interval [CI], 1.53 to 1.95) and 1.63 for current women smokers (95% CI, 1.37 to 1.94). Smoking accounted for 33.2% of all-cause deaths in men and 4.6% in women. Additionally, it was a factor in 71.8% of men lung cancer deaths and 11.9% of women lung cancer deaths. In 2020, smoking was responsible for 53 930 men deaths and 6283 women deaths, totaling 60 213 deaths. Conclusions: Cigarette smoking was responsible for a significant number of deaths in Korea in 2020. Monitoring the impact and societal burden of smoking is essential for effective tobacco control and harm prevention policies.

Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations (대기오염집중측정소별 2013~2015년 사이의 PM2.5 화학적 특성 차이 및 유발인자 조사)

  • Yu, Geun Hye;Park, Seung Shik;Ghim, Young Sung;Shin, Hye Jung;Lim, Cheol Soo;Ban, Soo Jin;Yu, Jeong Ah;Kang, Hyun Jung;Seo, Young Kyo;Kang, Kyeong Sik;Jo, Mi Ra;Jung, Sun A;Lee, Min Hee;Hwang, Tae Kyung;Kang, Byung Chul;Kim, Hyo Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.16-37
    • /
    • 2018
  • In this study, difference in chemical composition of $PM_{2.5}$ observed between the year 2013 and 2015 at six air quality intensive monitoring stations (Bangryenogdo (BR), Seoul (SL), Daejeon (DJ), Gwangju (GJ), Ulsan (US), and Jeju (JJ)) was investigated and the possible factors causing their difference were also discussed. $PM_{2.5}$, organic and elemental carbon (OC and EC), and water-soluble ionic species concentrations were observed on a hourly basis in the six stations. The difference in chemical composition by regions was examined based on emissions of gaseous criteria pollutants (CO, $SO_2$, and $NO_2$), meteorological parameters (wind speed, temperature, and relative humidity), and origins and transport pathways of air masses. For the years 2013 and 2014, annual average $PM_{2.5}$ was in the order of SL ($${\sim_=}DJ$$)>GJ>BR>US>JJ, but the highest concentration in 2015 was found at DJ, following by GJ ($${\sim_=}SJ$$)>BR>US>JJ. Similar patterns were found in $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$. Lower $PM_{2.5}$ at SL than at DJ and GJ was resulted from low concentrations of secondary ionic species. Annual average concentrations of OC and EC by regions had no big difference among the years, but their patterns were distinct from the $PM_{2.5}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ concentrations by regions. 4-day air mass backward trajectory calculations indicated that in the event of daily average $PM_{2.5}$ exceeding the monthly average values, >70% of the air masses reaching the all stations were coming from northeastern Chinese polluted regions, indicating the long-range transportation (LTP) was an important contributor to $PM_{2.5}$ and its chemical composition at the stations. Lower concentrations of secondary ionic species and $PM_{2.5}$ at SL in 2015 than those at DJ and GJ sites were due to the decrease in impact by LTP from polluted Chinese regions, rather than the difference in local emissions of criteria gas pollutants ($SO_2$, $NO_2$, and $NH_3$) among the SL, DJ, and GJ sites. The difference in annual average $SO{_4}^{2-}$ by regions was resulted from combination of the difference in local $SO_2$ emissions and chemical conversion of $SO_2$ to $SO{_4}^{2-}$, and LTP from China. However, the $SO{_4}^{2-}$ at the sites were more influenced by LTP than the formation by chemical transformation of locally emitted $SO_2$. The $NO_3{^-}$ increase was closely associated with the increase in local emissions of nitrogen oxides at four urban sites except for the BR and JJ, as well as the LTP with a small contribution. Among the meterological parameters (wind speed, temperature, and relative humidity), the ambient temperature was most important factor to control the variation of $PM_{2.5}$ and its major chemical components concentrations. In other words, as the average temperature increases, the $PM_{2.5}$, OC, EC, and $NO_3{^-}$ concentrations showed a decreasing tendency, especially with a prominent feature in $NO_3{^-}$. Results from a case study that examined the $PM_{2.5}$ and its major chemical data observed between February 19 and March 2, 2014 at the all stations suggest that ambient $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations are not necessarily proportional to the concentrations of their precursor emissions because the rates at which they form and their gas/particle partitioning may be controlled by factors (e.g., long range transportation) other than the concentration of the precursor gases.

Scheme on Environmental Risk Assessment and Management for Carbon Dioxide Sequestration in Sub-seabed Geological Structures in Korea (이산화탄소 해양 지중저장사업의 환경위해성평가관리 방안)

  • Choi, Tae-Seob;Lee, Jung-Suk;Lee, Kyu-Tae;Park, Young-Gyu;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.307-319
    • /
    • 2009
  • Carbon dioxide capture and storage (CCS) technology has been regarded as one of the most possible and practical option to reduce the emission of carbon dioxide ($CO_2$) and consequently to mitigate the climate change. Korean government also have started a 10-year R&D project on $CO_2$ storage in sea-bed geological structure including gas field and deep saline aquifer since 2005. Various relevant researches are carried out to cover the initial survey of suitable geological structure storage site, monitoring of the stored $CO_2$ behavior, basic design of $CO_2$ transport and storage process and the risk assessment and management related to $CO_2$ leakage from engineered and geological processes. Leakage of $CO_2$ to the marine environment can change the chemistry of seawater including the pH and carbonate composition and also influence adversely on the diverse living organisms in ecosystems. Recently, IMO (International Maritime Organization) have developed the risk assessment and management framework for the $CO_2$ sequestration in sub-seabed geological structures (CS-SSGS) and considered the sequestration as a waste management option to mitigate greenhouse gas emissions. This framework for CS-SSGS aims to provide generic guidance to the Contracting Parties to the London Convention and Protocol, in order to characterize the risks to the marine environment from CS-SSGS on a site-specific basis and also to collect the necessary information to develop a management strategy to address uncertainties and any residual risks. The environmental risk assessment (ERA) plan for $CO_2$ storage work should include site selection and characterization, exposure assessment with probable leak scenario, risk assessment from direct and in-direct impact to the living organisms and risk management strategy. Domestic trial of the $CO_2$ capture and sequestration in to the marine geologic formation also should be accomplished through risk management with specified ERA approaches based on the IMO framework. The risk assessment procedure for $CO_2$ marine storage should contain the following components; 1) prediction of leakage probabilities with the reliable leakage scenarios from both engineered and geological part, 2) understanding on physio-chemical fate of $CO_2$ in marine environment especially for the candidate sites, 3) exposure assessment methods for various receptors in marine environments, 4) database production on the toxic effect of $CO_2$ to the ecologically and economically important species, and finally 5) development of surveillance procedures on the environmental changes with adequate monitoring techniques.

  • PDF