• Title/Summary/Keyword: Impact Loading

Search Result 830, Processing Time 0.031 seconds

Behavior of Segmented Composites Using General Mortar under Static and Impact Loading (일반 모르타르를 이용한 분절 복합체의 정하중 및 충격하중 실험)

  • Kim, Youl-Hee;Min, Kyung-Hwan;Lee, Jae-Seong;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.33-36
    • /
    • 2008
  • It is generally known that a shell in the form of layered structures stacked up thin elements by organic adhesives has high resistance capacity against static and impact loading. The complex materials such as these diversified layered structures are more reliable and efficient to the impact loading than the single material. In this study, the segmented composites in the shape of a beam were made, using mortar and concrete block and tested under static and impact loading in order to develop the complex materials in the form of layered structures as the segmented composites to resist impact loading. And it compared to the normal concrete beams having the same compressive strength to evaluate the differences in their performance and failure modes.

  • PDF

Polypropylene fiber reinforced concrete plates under fluid impact. Part I: experiments

  • Korucu, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.211-223
    • /
    • 2016
  • Static loading and fluid impact tests on plates containing mesh reinforcement and polypropylene fibers in ratios of 0 to 3% by volume were performed. The objective was to observe the effect of fluid mass on the total impulse that caused the impact event and the influence of fiber amount on the impact resistance, and to estimate the velocity of fluid that causes scabbing, perforation or total disintegration. The study is the first to express the fluid impact resistance of polypropylene fiber reinforced concrete plates.

A Study on the strength improvement in weldment by the impact loading (충격하중에 의한 용접구조물의 강도 증가에 관한 연구)

  • 이천수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.121-124
    • /
    • 1998
  • It is well known that during the oxygen cutting residual thermal stresses are produced in weldment. Surface compressive residual stress is one of reasons for improvement on fatigue durability. To reduce the residual stress and improve the fatigue strength applied the impact loading in oxygen cutting frame. After applying the impact loading, redistribution of residual stress was measured by cutting method and tested fatigue tests.

  • PDF

A Study on the strength improvement in weldment by the impact loading (충격하중에 의한 용접구조물의 강도 증가에 관한 연구)

  • 양영수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.76-82
    • /
    • 2000
  • It is well known that during the oxygen cutting process residual thermal stresses are produced in weldment. The local non-uniform heating and subsequent cooling which takes place during any welding process causes complex thermal strains and stresses to finally lead to residual stresses exceed to the yield stress. High tensile stresses combined with applied structural load in the region near the welded joint can given rise to distortion brittle fracture change of the fatigue strength and stress corrosion cracking. The appropriate treatment of the welded component which reduces the peak of he welding residual stresses is believed to lower risk of the fracture during the service of the structure. In this study the impact loading in oxygen cutting frame was applied to reduce the residual stress. After applying the impact loading redistribution of resid-ual stress was measured by cutting method and the effect of fatigue was tested.

  • PDF

Local Zooming Analysis of LNGC CCS under Sloshing Impact Loading (LNG선 단열시스템의 슬로싱 충격하중에서의 국부확대해석)

  • Lee, Sang-Gab;Hong, Anh;Cho, Heon-Il;Kim, Jin-Kyung;Ahn, Ji-Woong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.544-551
    • /
    • 2011
  • As the cargo tank size and configuration of Liquefied Natural Gas carriers(LNGC) grows in response to the global increase in demands for LNG and the necessities of its economical transportation, impact loading from sloshing may become one of the most important factors in the structural safety of LNG Cargo Containment Systems(CCS). The objective of this study is to demonstrate the procedure of the structural safety assessment of MARK III membrane type CCS under sloshing impact loading using local zooming analysis technique of LS-DYNA code.

  • PDF

Damage prediction of RC containment shell under impact and blast loading

  • Pandey, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.729-744
    • /
    • 2010
  • There is world wide concern for safety of nuclear power installations after the terrorist attack on World Trade Center in 2001 and several other civilian structures in the last decade. The nuclear containment structure in many countries is a double shell structure (outer shell a RCC and inner a prestressed concrete). The outer reinforced concrete shell protects the inner shell and is designed for external loading like impact and blast. A comparative study of non-linear response of reinforced concrete nuclear containment cylindrical shell subjected to impact of an aircraft (Phantom) and explosion of different amounts of blast charges have been presented here. A material model which takes into account the strain rate sensitivity in dynamic loading situations, plastic and visco-plastic behavior in three dimensional stress state and cracking in tension has been developed earlier and implemented into a finite element code which has been validated with published literature. The analysis has been made using the developed software. Significant conclusions have been drawn for dissimilarity in response (deflections, stresses, cracks etc.) of the shell for impact and blast loading.

Impact Fracture Behaviors of Zr-Based Bulk Amorphous Metals (Zr-기 벌크 아몰퍼스 금속의 충격 파괴 거동)

  • Ko, Dong-Kyun;Jeong, Young-Jin;Shin, Hyung-Seop;Oh, Sang-Yeob
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1246-1251
    • /
    • 2003
  • The fracture behaviors of Zr-based bulk amorphous metals(BAMs) having compositions of $Zr_{55}Al_{10}Ni_{5}Cu_{30}$, were investigated under impact loading and quasi-static conditions. For experiments, a newly devised instrumented impact testing apparatus and the subsize Charpy specimens were used. The influences of loading rate and the notch shape on the fracture behavior of the Zr-based BAM were examined. The Zr-based BAMs showed an elastic deformation behavior without any plastic deformation on it before fracture. Most fracture energies were absorbed in the process of the crack initiation. The maximum load and fracture absorbed energy under quasi-static condition were larger than those under impact condition. However, there existed relatively insignificant notch shape effect. Fracture surfaces under impact loading were smoother than those under quasi-static loading. The absorbed fracture energy appeared differently depending on the extent of the vein-like pattern region due to the shear bands developed at the notch tip. It can be found that the fracture energy of the Zr-Al-Ni-Cu alloy is closely related with the development of shear bands during fracture.

  • PDF

Impact Force and Acoustic Analysis on Composite Plates with In-plane Loading (면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석)

  • Kim, Sung-Joon;Hwang, In-Hee;Hong, Chang-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.179-186
    • /
    • 2012
  • The potential hazards resulting from a low-velocity impact(bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or leading edges has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips

  • Anil, Ozgur;Yilmaz, Tolga
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.417-439
    • /
    • 2015
  • Many methods are developed for strengthening of reinforced concrete structural members against the effects of shear. One of the commonly used methods in recent years is turned out to be bonding of fiber reinforced polymers (FRP). Impact loading is one of the important external effects on the reinforced concrete structural members during service period among the others. The determination of magnitude, the excitation time, deformations and stress due to impact loadings are complicated and rarely known. In recent year impact behavior of reinforced concrete members have been researched with experimental studies by using drop-weight method and numerical simulations are done by using finite element method. However the studies on the strengthening of structural members against impact loading are very seldom in the literature. For this reason, in this study impact behavior of shear deficient reinforced concrete beams that are strengthened with carbon fiber reinforced polymers (CFRP) strips are investigated experimentally. Compressive strength of concrete, CFRP strips spacing and impact velocities are taken as the variables in this experimental study. The acceleration due to impact loading is measured from the specimens, while velocities and displacements are calculated from these measured accelerations. RC beams are modeled with ANSYS software. Experimental result and simulations result are compared. Experimental result showed that impact behaviors of shear deficient RC beams are positively affected from the strengthening with CFRP strip. The decrease in the spacing of CFRP strips reduced the acceleration, velocity and displacement values measured from the test specimens.

Delamination growth analysis in composite laminates subjected to low velocity impact

  • Kharazan, Masoud;Sadr, M.H.;Kiani, Morteza
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.387-403
    • /
    • 2014
  • This paper presents a high accuracy Finite Element approach for delamination modelling in laminated composite structures. This approach uses multi-layered shell element and cohesive zone modelling to handle the mechanical properties and damages characteristics of a laminated composite plate under low velocity impact. Both intralaminar and interlaminar failure modes, which are usually observed in laminated composite materials under impact loading, were addressed. The detail of modelling, energy absorption mechanisms, and comparison of simulation results with experimental test data were discussed in detail. The presented approach was applied for various models and simulation time was found remarkably inexpensive. In addition, the results were found to be in good agreement with the corresponding results of experimental data. Considering simulation time and results accuracy, this approach addresses an efficient technique for delamination modelling, and it could be followed by other researchers for damage analysis of laminated composite material structures subjected to dynamic impact loading.